

COMPARISON OF TWO NOVEL INTEGRAL EQUATION **APPROACHES FOR LOSSY CONDUCTOR MODELING**

Martijn Huynen / Michiel Gossye / Daniël De Zutter / Hendrik Rogier / Dries Vande Ginste

- Motivation
- Calderón preconditioned HDC method
- 3-D differential surface admittance operator
- Examples
- Conclusions

Motivation

- Calderón preconditioned HDC method
- 3-D differential surface admittance operator
- Examples
- Conclusions

MOTIVATION Industries

Semiconductors

5G to IoT

Automotive

Aerospace and Defense

GHENT UNIVERSITY

Devices & Components

Antennas

Filters

Passive components

Technologies

MMICs

RF PCBs

Next generation ICs

Technologies

Increasing need for accurate simulations

Next generation ICs

BOUNDARY INTEGRAL EQUATIONS

Calderón precondition	ned PMCHWT Met
Only surface discretization	Dense system mat
Automatic inclusion radiation condition	Low-frequency & c
Scalable through MLFMM	Difficulty numerica

But for materials with a high dielectric contrast (HDC), e.g. good conductors, conditioning problems return

Calderón preconditioned PMCI	HWT Method for H
Only surface discretization	Dense system mat
Automatic inclusion radiation condition	Low-frequency & d
Scalable through MLFMM	Difficulty numerical

hod

trix

lense-mesh breakdown

computation for lossy conductors

DC materials

ΓIX

lense-mesh breakdown

computation for lossy conductors

THIS WORK

- Two single-source boundary integral equation (BIE) solutions that both focus on one crucial aspect:
 - Method 1: A Calderón preconditioned (CP) BIE that does not break down in the presence of HDC materials
 - Method 2: A 3-D differential surface admittance (DSA) operator that tackles the difficulty of numerically integrating the Green's function inside highly conductive dielectrics.

Motivation

- Calderón preconditioned HDC method
- 3-D differential surface admittance operator
- Examples
- Conclusions

CALDERÓN PRECONDITIONER FOR HDC MEDIA

 $\mathcal{K}_0 =$ Magnetic field integral operator in \mathcal{V}_0 $\mathcal{T}_0 = \mathsf{Electric}$ field integral operator in \mathcal{V}_0 $\eta_0 =$ Impedance of background medium

CALDERÓN PRECONDITIONER FOR HDC MEDIA

Introduction of the Poincaré-Steklov operator, results in a solvable system by eliminating $\mathbf{u}_n \times \mathbf{h}$:

$$\mathcal{P}\left(\mathbf{u}_n \times \mathbf{e}\right) = \mathbf{u}_n \times \mathbf{h}$$

agnetic field integral operator in \mathcal{V} ectric field integral operator in \mathcal{V} opedance of original medium bincaré-Steklov operator of e original medium

CALDERÓN PRECONDITIONER FOR HDC MEDIA

$$\begin{pmatrix} \mathcal{K}_0 + \frac{1}{2} & -1 \\ \frac{\mathcal{T}_0}{\eta_0} & \mathcal{P} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{m}_s \\ -\mathbf{u}_n \times \mathbf{e} \end{pmatrix} = \begin{pmatrix} \mathbf{u}_n \times \mathbf{e}_i \\ -\mathbf{u}_n \times \mathbf{h}_i \end{pmatrix}$$

Introduction Calderón preconditioner (CP):

- Eliminates ill-conditioning
- Avoids calculation \mathcal{T}^{-1} in Poincaré-Steklov operator

$$\begin{pmatrix} \mathcal{K}_0 + \frac{1}{2} & -1 \\ -\frac{\eta}{\eta_0} \mathcal{T} \mathcal{T}_0 & \mathcal{K} + \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{m}_s \\ -\mathbf{u}_n \times \mathbf{e} \end{pmatrix} = \begin{pmatrix} \mathbf{u}_n \times \mathbf{e}_i \\ \eta \mathcal{T} \left(\mathbf{u}_n \times \mathbf{h}_i \right) \end{pmatrix}$$

 $\begin{pmatrix} 0\\ -\eta \mathcal{T} \end{pmatrix}$

 $(\mathbf{e}_i,\mathbf{h}_i)$

12

 \mathcal{S}

 \mathbf{u}_n

SPECTRAL PROPERTIES

Eigenvalue accumulation points:

 $\lambda = rac{1}{2} \pm rac{1}{2} \sqrt{rac{\epsilon_0}{\epsilon}} j$ $\lambda = rac{1}{2} \pm rac{1}{2} \sqrt{rac{\mu}{\mu_0}} j$

$\mathcal{V}_0 = \text{vacuum: } \epsilon_{r,0} = 1$ $\mathcal{V} = \text{vacuum: } \epsilon_r = 1$

SPECTRAL PROPERTIES

Eigenvalue accumulation points:

 $\lambda = \frac{1}{2} \pm \frac{1}{2} \sqrt{\frac{\epsilon_0}{\epsilon}} j$ $\lambda = \frac{1}{2} \pm \frac{1}{2} \sqrt{\frac{\mu}{\mu_0}} j$

$\mathcal{V}_0 = \text{vacuum: } \epsilon_{r,0} = 1$ $\mathcal{V} = \text{copper: } |\epsilon_r| >> 1$

- Motivation
- Calderón preconditioned HDC method
- 3-D differential surface admittance operator
- Examples
- Conclusions

3-D DIFFERENTIAL SURFACE ADMITTANCE OPERATOR

$$\mathcal{P}(\mathbf{u}_n \times \mathbf{e}) = \mathbf{u}_n \times \mathbf{h}$$
 $\mathcal{P}_0(\mathbf{u}_n \times \mathbf{e}') = \mathbf{u}_n \times \mathbf{h}'$

$$\mathcal{P} = \text{Poincaré-Steklov operator of}$$

the original medium

 $(\mathbf{e}_i, \mathbf{h}_i)$

 \mathcal{S}

 $\mathbf{J}s$

 \mathbf{u}_n

 $\mathcal{P}_0 = Poincaré-Steklov operator of$ the background medium

3-D DIFFERENTIAL SURFACE ADMITTANCE OPERATOR $(\mathbf{e}_i, \mathbf{h}_i)\zeta$ $\mathbf{e}_0, \mathbf{h}_0)$ $(\mathbf{e}_0, \mathbf{h}_0)$ $,\mu_0$ k_0, μ_0 \mathcal{V}_0 (\mathbf{h}) $(\mathbf{e}', \mathbf{h}')$

Through the boundary conditions in both situations, both PS operators can be combined to:

$$\mathbf{j}_{s} = (\mathcal{P} - \mathcal{P}_{0}) (\mathbf{u}_{n} \times \mathbf{e}) = \mathcal{Y} (\mathbf{u}_{n} \times \mathbf{e})$$

The electric field integral equation (EFIE) completes the system of equations

$$\eta_0 \mathcal{T} \mathbf{j}_s + \mathbf{u}_n \times \mathbf{e} = \mathbf{u}_n \times \mathbf{e}_i$$

 \mathcal{Y} could be computed directly, but the computation of \mathcal{P} involves bothersome numerical integrals 🔀

Novel alternative method that avoids these integrals...

$$(\mathbf{e}_i, \mathbf{h}_i)^{\boldsymbol{\zeta}}$$
 (e)

 μ_0

$\mathcal{Y} = \mathsf{Differential} \ \mathsf{surface} \ \mathsf{admittance} \ \mathsf{operator}$

 k_0, μ_0

3-D DIFFERENTIAL SURFACE ADMITTANCE OPERATOR

Normalization constant

Valid for all materials (including good conductors) \otimes Require over a broad frequency range $\Rightarrow \mathcal{V}$ s

Solution Does not rely on the Green's function in the medium \Rightarrow integrals are material independent

 \mathbf{h}_{mnp}

Solution Requires eigenmodes of the volume \mathcal{V} $\Rightarrow \mathcal{V}$ should be a canonical shape

- Motivation
- Calderón preconditioned HDC method
- 3-D differential surface admittance operator
- Examples
- Conclusions

VALIDATION METHOD 1

Side = 2 m

Low frequency breakdown does not occur: Condition number converges for decreasing frequency

Full line = method 1 Dashed line = CP-PMCHWT

$-\epsilon_r = 4^{(1)}$ $- \epsilon_r = 100^{(1)}$ $\epsilon_r = 1 + \frac{\sigma_{copper}}{j\omega\epsilon_0} (1)$ $\epsilon_r = 4^{(2)}$ $\bullet_r = 100^{(2)}$ $\frac{\sigma_{copper}}{\sigma_{copper}}(2)$ $\epsilon_r = 1 +$ $j\omega\epsilon_0$ 10^{6} 10^{7} 10^{8} f [Hz]

VALIDATION METHOD 2 (1)

Normalized resistance = total resistance (3-D) / length

VALIDATION METHOD 2 (2)

[1] D. De Zutter and L. Knockaert, IEEE MTT, vol. 53, pp. 2526-2538 (2005)

COMPARISON METHOD 1 & 2: CUBE SCATTERING

Side = 0.5 m Frequency = 200 MHz

 $\begin{array}{c|c} 2 \\ 0 \\ \hline 0 \\ \hline 0 \\ -2 \\ SOB \\ -4 \\ -6 \\ \hline -8 \\ 0 \\ \hline \pi/4 \end{array}$

mesh elements:

Method 1: 936 (generated triangular mesh) Method 2: 432 (structured rectangular mesh)

Very good agreement between both methods Small deviation due to course mesh

COMPARISON METHOD 1 & 2: CUBE SCATTERING

Side = 0.5 mFrequency = 200 MHz

mesh elements:

Method 1: 936 (generated triangular mesh) Method 2: 432 (structured rectangular mesh)

- Similar # iterations for solution
- Method 1 outperforms method 2 for HDC despite larger system matrix

APPLICATION METHOD 1: ELLIPSOID SCATTERING

Frequency = 200 MHz

Stable number of iterations over a wide frequency range Increase for HDC at highest frequency due to internal resonances

Frequency = 434 MHz (ISM band)

> For poor conductive elements, parasitic elements are transparent \rightarrow responsive resembles (inefficient) dipole

Once skin effect appears, gain increases and Yagi-Uda operation starts shaping the gain pattern 25

- Motivation
- Calderón preconditioned HDC method
- 3-D differential surface admittance operator
- Examples
- Conclusions

CONCLUSIONS

Two novel boundary integral equation methods

- Single-source formulations
- Well equipped to handle good conductors & HDC
- New Calderón preconditioner
 - No low-frequency or dense-mesh breakdown for HDC
- 3-D differential surface admittance operator
 - No cumbersome integrals involving HDC's Green's function
 - Broadband model

Martijn Huynen Post-doctoral researcher **QUEST LAB & ELECTROMAGNETICS GROUP**

E	Martijn.Huynen@ugent.be
Т	+32 9 331 48 81
Μ	+32 400 00 00 00

f y in

www.ugent.be www.imec.be

Universiteit Gent @ugent **Ghent University**