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Abstract—In this contribution, we propose a novel approach to
rigorously model interconnect structures with an arbitrary con-
vex polygonal cross-section and general, piecewise homogeneous,
material parameters. A full-wave boundary integral equation
formulation is combined with a differential surface admittance
approach, invoking an extended form of the numerically fast
Fokas method to construct the pertinent operator. Several ex-
amples validate our method and demonstrate its applicability to
per-unit-of-length resistance and inductance characterization.

Index Terms—differential surface admittance, Fokas method,
interconnect modeling

I. INTRODUCTION

In our modern society, where information technology is om-
nipresent, the development of sophisticated devices at ever
higher operating frequencies poses serious challenges, e.g.,
in terms of electromagnetic compatibility and signal integrity.
Combined with the continuing miniaturization, this evolution
renders a proper analysis of the occurring electromagnetic
fields and their wave nature indispensable. More specifically,
in high-frequency interconnects, phenomena such as the skin
and proximity effect should be taken into account in a rigorous
fashion. For electromagnetic solvers employing a volumetric
mesh, such as the versatile finite elements method (FEM),
the exponential nature of the current crowding enforces an
intractably fine discretization. The boundary integral equa-
tion (BIE) method and many other surface-based techniques,
on the other hand, require particular attention to deal with
the numerical integration of the Green’s function in highly
conductive media [1].

A popular procedure to circumvent this strenuous situ-
ation replaces the conductive material by its surrounding
medium, while introducing additional boundary conditions.
For instance, in the class of approximate techniques, (local)
surface impedances are invoked [2]. Alternatively, the dif-
ferential surface admittance (DSA) operator [3] captures the
substituted material’s properties in an exact, global way. Its
implementation requires the eigenfunctions of the considered
cross-sections, imposing a de facto limitation to circular and
rectangular shapes. An extension to triangles, not relying on
the Dirichlet eigenfunctions, was presented in [4]. However,
this approach involves special measures to eliminate a promi-
nent Gibbs effect degrading the initial solution. Moreover, a
combination of multiple triangular components is necessary

for the analysis of arbitrary polygonal cross-sections. In yet
other formulations [6], numerical issues may arise, in partic-
ular in the case of high material contrasts [1].

Here, on the other hand, we invoke and extend the Fokas
method [5] to construct the DSA operator, automatically
expanding its applicability to arbitrary convex shapes, while
combined magnetic and dielectric contrast is allowed. As such,
our method can, e.g., account for etching effects during the
manufacturing of integrated circuits, resulting in trapezoidal
structures. Coupled with the discretized electric field integral
equation (EFIE), a formalism to accurately characterize inter-
connect structures is obtained, even for high material contrast
and a strongly developed skin effect.

II. FORMULATION OF THE METHOD

Consider the two-dimensional (2-D) transverse magnetic (TM)
polarized electromagnetic regime with a ejωt time dependence.
We study a polygonal cylinder (typically a conductor) with
M corner points (xm, ym) in the xy-plane, denoted as com-
plex numbers ζm = xm + ȷym. The cylinder is characterized
by its permittivity ϵi, permeability µi, conductivity σi and
wavenumber ki, and is situated in a homogeneous background
medium with material properties ϵe, µe, σe and wavenum-
ber ke, as depicted in Fig. 1(a). Its longitudinal dimension
is aligned with the z-axis. By applying the single source
equivalence theorem, introducing an equivalent surface current
density js = js,z ẑ on the boundary C, we can replace the
cylinder’s material by its surrounding medium, preserving the
outside fields, while the inside fields (ei,hi) are modified to
the fictitious quantities (e′i ,h

′
i), as in Fig. 1(b). This equivalent

surface current density is given by

js = n̂× (hi − h′
i). (1)

At the boundary of the structure, and only there, we find that
ei = e′i ≜ e = ez ẑ, which is mapped to its normal derivative
in the original and the equivalent situation via Dirichlet-to-
Neumann (DtN) operators X and X ′, resp.:

−ȷωµi(n̂× hi) = Xe, (2)
−ȷωµe(n̂× h′

i) = X ′e. (3)

By combining (1), (2) and (3), we obtain

js =

(
X ′

ȷωµe
− X

ȷωµi

)
e ≜ Ye, (4)
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Fig. 1: Geometry of the problem, illustrating the equivalence theorem, with
(a) the original and (b) the equivalent situation.

where Y is the desired DSA operator [3].
The tangential electric field ez satisfies the Helmholtz

equation with eigenvalues ki and ke:

∇2ez + k{i, e}ez = 0. (5)

To solve the boundary value problems posed by (2), (3) and
(5) we propose a Fokas-like method [5]. The following Fourier
transform, the so-called global relation, is at its core:

F (λ) =

∫
C

exp

[
− ȷk

2

(
ζ̃

λ
+ λζ

)]
×

[
kϕ

2

(
λ dζ − dζ̃

λ

)
+

∂ϕ

∂n
dc

]
= 0, ∀λ ∈ C, (6)

where ζm = xm+ ȷym, ·̃ indicates the complex conjugate and
C denotes the polygonal boundary. Furthermore, ϕ = ez and
∂ϕ
∂n = −ȷωµ{i, e}h

{i, e}
tan in our case. Equation (6) is cast onto

an appropriate basis of P orthogonal Legendre polynomials
on each polygon side and evaluated at Λ well-chosen spectral
collocation points λ ∈ C:

λ = −
l/k +

√
(l/k)2 − |hm|2
hm

, (7)

for l ∈ {0, 1, 2, . . . ,Λ − 1} and m ∈ {1, 2, . . . ,M}, where
hm = (ζm+1 − ζm)/2 and k is the wavenumber. This way,
one ends up with an overdetermined, but very quickly solved,
linear system with a solution that finally yields a discrete
approximation of the pertinent DtN operators.

To incorporate this result in a BIE framework, a transfor-
mation to local, pulse-shaped basis functions is performed. By
collecting the corresponding expansion coefficients of js and e
into vectors J and E, we obtain the discretized version of (4):

GJ =

(
X

′

ȷωµe
− X

ȷωµi

)
E ≜ YE, (8)

with G the Gram matrix of the local basis functions.
To find the per-unit-of-length (p.u.l.) resistance and induc-

tance matrices R and L for a configuration with N conductors,
we invoke the procedure outlined in [3], yielding

R+ ȷωL =

(
T

T
(
GY

−1
G+ ȷωA

)−1

T

)−1

, (9)
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Fig. 2: Configuration with four trapezoidal conductors (σ = 5.72× 107 S/m)
with dimensions in mm: B = 1.5, b = 0.9, h = 0.3, D = 4, d = 2.4 and
H = 1.5, situated above an infinite PEC ground plane.
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Fig. 3: Relevant elements of the resistance and inductance matrices R and L,
for the configuration of Fig. 2.

where the elements of the matrix A are obtained through(
A
)
ij
= −µe

∫
C

∫
C′

G(r, r′)bi(c)bj(c
′) dc′ dc . (10)

with G(r, r′) = ln |r − r′|/(2π), the 2-D static Green’s
function. The matrix T is defined as(

T
)
in

=

{
ℓi, if segment i ∈ conductor n
0, otherwise,

(11)

with ℓi the length of segment i in the mesh.

III. NUMERICAL EXAMPLES

Consider the configuration with two oppositely oriented trape-
zoidal line pairs and conductivity σ = 5.72× 107 S/m above
an infinite ground plane, shown with annotated dimensions
in Fig. 2. Relevant elements of the corresponding resistance
matrix R and inductance matrix L, determined by means of
the procedure outlined above, are compared to the reference
solution provided by [4] in Fig. 3. The pertinent system matrix
is constructed invoking P = 20 Legendre polynomials per
side of the trapezoids, and is evaluated in Λ = 40 collocation
points λ per side as well. These values for the parameters
(P,Λ) will also be utilized in the remaining examples. An
excellent agreement between our proposed method and the
result found in literature is observed.
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Fig. 4: Multiconductor transmission line (σ = 3.57× 107 S/m) with three
trapezoidal signal lines and a finite rectangular reference conductor. All
dimensions are in µm.
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Fig. 5: Relevant elements of the resistance and inductance matrices R and L,
for the configuration of Fig. 4.

Next, we study the multiconductor transmission line de-
picted in Fig. 4, with reference conductor 0. The dimensions
annotated on the figure are all given in µm. We obtain the
curves plotted in Fig. 5, validated by means of the results
in [6]. Once again, both sets of results match excellently.

Finally we investigate the influence of the conductor
(σ = 1× 107 S/m, µr = 5) shape in the configuration of
Fig. 6, evolving from triangular (solid lines), over asymmetric
trapezoidal (dashed) to rectangular (dotted). This example
includes a conductive, magnetic medium and therefore demon-
strates the capability of our method to model this novel class
of materials, present in state-of-the-art interconnect applica-
tions [7]. The elements of the matrices R and L are given
in Fig. 7, for these three shapes. Note that R11 = R22 and
L11 = L22 owing to the symmetry of our problem.

For all of the above examples, the calculation of the DSA
matrix by means of a Python code on a system with a
1.9 GHz CPU and 16 GB of RAM required less than 0.5 s
per frequency point, a value comparable to the times reported
in [6], confirming the efficiency of our method.

IV. CONCLUSIONS

We presented a novel interconnect modeling technique, com-
bining a boundary integral equation framework with a differ-
ential surface admittance operator, constructed through appli-
cation of the numerically fast Fokas method. Our approach
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Fig. 6: Multiconductor transmission line (σ = 1 × 107 S/m, µr = 5) with
two triangular/trapezoidal/rectangular signal lines and two finite rectangular
reference conductors. All dimensions are in 0.1 mm.
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Fig. 7: Relevant elements of the resistance and inductance matrices R and L,
for the configuration of Fig. 6. The solid, dashed and dotted lines correspond
to the triangular, trapezoidal and rectangular conductor shapes, resp.

supports multiconductor configurations with arbitrary, piece-
wise homogeneous material properties and convex polygonal
shapes. By means of per-unit-of-length resistance and induc-
tance characterization of these structures, we demonstrated our
method’s accuracy, efficiency and broadband applicability.
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