
Quantum 
Mechanical & 
Electromagnetic 
Systems 
Modelling Lab

A Hybrid EM/QM Framework Based on
the ADHIE-FDTD Method for the Modeling of Nanowires.
Pieter DECLEER and Dries VANDE GINSTE.



Introduction

Modeling framework

Numerical examples

Conclusions

Outline.

2



Introduction.
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Moore, Moorer, Moorest.

Context and motivation.

IEEE International Roadmap for Devices and Systems - IEEE IRDS™
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Example 1: Intel’s Core i7-8700K processor with tri-gate transistor technology

Example 2: 3-D integration (source: CEA-Leti’s 2015 roadmap)

Moore, Moorer, Moorest.

Context and motivation.

Modeling challenges

Electromagnetic (EM) full-wave

Heterogeneity

Highly multiscale
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Example 3: imec’s Transistor Technology Roadmap (Source: imec, 2022)

Example 4: Sub-10 nm graphene nano-ribbon tunnel field-effect transistor [1]

Moore, Moorer, Moorest.

Context and motivation.

Physical phenomena

Charge carrier confinement, ballistic transport

Tunnel effect, Klein effect, …

Modeling challenges

Quantum mechanical (QM) aspects

Ab Initio (↔ macroscopic conductivity models)

Multiphysics (EM/QM)

[1] A.M.M. Hammam et al, Carbon, 2018 6



Why do we construct (multiscale and multiphysics) computational techniques?

Context and motivation.

Nano(electronic) and quantum devices: heavily researched (applications / manufacturability)

Physical phenomena occurring in these devices are not always well-understood

Computational tools and models lead to

a more thorough insight in the functioning of these novel devices and systems;

computer aided design software, avoiding trial and error during development.
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Why do we construct (multiscale and multiphysics) computational techniques?

Context and motivation.

Nano(electronic) and quantum devices: heavily researched (applications / manufacturability)

Physical phenomena occurring in these devices are not always well-understood

Computational tools and models lead to

a more thorough insight in the functioning of these novel devices and systems;

computer aided design software, avoiding trial and error during development.

Additionally, it’s fun!
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General approach.

Hybrid EM/QM modeling.

Electromagnetic (EM) phenomena

Maxwell’s equations

Continuity equation
(conservation of charge)

Vector potential
and scalar potential

Lorenz gauge condition

9



General approach.

Hybrid EM/QM modeling.

Quantum mechanical (QM) phenomena

The Schrödinger equation(*):

: wave function (probability amplitude)

: particle’s (effective) mass

: Hamiltonian operator

: scalar potential energy (e.g., confining potential)

: reduced Plank’s constant

10(*) other “choices” for QM equation of motion: Dirac, Kohn-Sham, quantum transport, …



General approach.

Hybrid EM/QM modeling.

Quantum mechanical (QM) phenomena
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For a particle with charge q:

quantum charge density

quantum current density

x q

conservation of charge

The Schrödinger equation

Position probability density

Probability current density

Continuity equation
for probability



Quantum current density:

Conduction current density:

Free current density:

General approach.

Hybrid EM/QM modeling.

Self-consistent forward-backward coupling of light and matter

Maxwell’s equations Minimally-coupled Schrödinger equation
(spinless particle with charge q)

forward via EM potentials

backward via quantum current density

12



Choices.

Hybrid EM/QM modeling.

Traditionally

Real-space methods in time domain, e.g., [2]

→ nonlinear coupling between EM and QM

In this seminar

Also finite-difference time-domain (FDTD) methods on a real-space grid 

Full solution of the EM fields

→ inclusion of dielectric and magnetic materials

→ compatible with legacy software

EM potentials derived from EM fields

→ Lorenz gauge, but other choices possible

Multiscale aspects

→ partial implicitization

→ trade-off between efficiency and accuracy

[2] C.J. Ryu et al, IEEE J-MMCT, 2016 13



Modeling framework.
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Leapfrog update equations in matrix form

matrices     and     are sparse

not for implementation

(e.g., for Yee-FDTD, use explicit update equations, instead of solving the linear system)

compact notation

algebraic properties

System is stable [3]

if                         and 

with real, symmetric and positive definite

real and                positive semidefinite

Update equations and stability.

Preliminary.

[3] B. Denecker et al, Int. J. Electron. Commun., 2004 15

: time step index
: source term



Yee’s finite-difference time-domain method (Yee-FDTD) [4].

Two traditional FDTD methods for the EM fields.

discretization on tensor-product grid 
&

central finite differences

Yee cell 

[4] K. Yee, IEEE T-AP, 1966

E and H also staggered in time

16



Yee-FDTD.

Two traditional FDTD methods for the EM fields.

Material matrices       and        : contain the (averaged) permittivity and permeability

Dimensionless curl matrix:

Discrete differentiator:

17
: Kronecker product



Yee-FDTD.

Two traditional FDTD methods for the EM fields.

Stability?

• Uniform gridding and homogeneous material

• Nonuniform gridding or inhomogeneities [5]

• Multiscale geometry with (albeit only one) tiny cell  =>  very small        => long CPU time

(Courant-Friedrichs-Lewy (CFL) criterion)

[5] A. Van Londersele et al, J. Comput. Phys., 2017 18



One-step leapfrog alternating-direction-implicit (ADI) FDTD [6].

Two traditional FDTD methods for the EM fields.

Formulation 

19[6] S.-C. Yang et al, IEEE T-AP, 2012



One-step leapfrog alternating-direction-implicit (ADI) FDTD [6].

Two traditional FDTD methods for the EM fields.

Formulation 

Complete curl splitting

20[6] S.-C. Yang et al, IEEE T-AP, 2012



One-step leapfrog ADI-FDTD.

Two traditional FDTD methods for the EM fields.

Properties

Unconditionally stable

Fully implicit

time-stepping requires inversion of (band) matrices => slower than explicit (e.g., Yee) schemes

Splitting error

extra blue terms: perturbation of the Yee-scheme

error increases with increasing time step and for EM fields with large gradient

21



Main drawbacks in the context of multiscale modeling.

Two traditional FDTD methods for the EM fields.

Yee-FDTD

One small grid cell

=> small time step

=> long CPU times

ADI-FDTD

Full implicitization is overkill

=> high splitting error and long CPU time

22



Main drawbacks in the context of multiscale modeling.

Two traditional FDTD methods for the EM fields.

Yee-FDTD

One small grid cell

=> small time step

=> long CPU times

ADI-FDTD

Full implicitization is overkill

=> high splitting error and long CPU time

Alternative (this work)

Alternating-direction hybrid implicit-explicit (ADHIE) method

partial implicitization: remove only the smallest grid cells

23



General formulation.

The ADHIE-FDTD method for the EM fields.

Adaptations

Splitting parameter

Different curl splitting matrices        and      

→ two illustrative examples on next slides

24



Implicitization of the entire z-direction.

The ADHIE-FDTD method for the EM fields.

Incomplete curl splitting

remainder 

With this choice:

all derivatives along x and y are explicit (Yee-style)

all derivatives along z are implicitized (ADI-style) 

=> All grid steps         along z are removed from the stability criterion (see further)

25



Partial (local) implicitization along the z-direction.

The ADHIE-FDTD method for the EM fields.

Even more incomplete
curl splitting

remainder 

is a diagonal matrix with entries:

Locally, some well-chosen (small) grid steps along z are removed!
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Properties.

The ADHIE-FDTD method for the EM fields.

Stability criterion: 

Special cases

Yee-FDTD :                            and thus                    →

ADI-FDTD:                  ,                ,              ,                 → unconditionally stable (          ∞),  but large splitting error

ADHIE splitting parameter   

trade-off between efficiency (time step) and splitting error

27



Formulation.

The ADHIE-FDTD method for the EM potentials.

Yee cell

28



Formulation.

The ADHIE-FDTD method for the EM potentials.

Temporal:
E and A at integer time indices
H and f at half-integer time indices

Extended Yee cell
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Formulation.

The ADHIE-FDTD method for the EM potentials.

ADHIE

Temporal:
E and A at integer time indices
H and f at half-integer time indices

Extended Yee cell

30



Properties.

The ADHIE-FDTD method for the EM potentials.

Stability criterion: 

ADHIE scheme: tunable between fully explicit and fully implicit

Stability does not depend on splitting parameter     , which can be chosen arbitrarily close to one

→ drastic reduction of splitting error

Implicit system can be solved using tridiagonal matrix algorithm

→ complexity of linear order

Stability of the complete Maxwellian system for                      is also guaranteed!
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Dispersion.

The ADHIE-FDTD method.

Plane wave traveling in the first quadrant of the (x,z) -plane under angle      with x-axis

Comparison between exact and numerical wavenumber     → numerical phase error:  

uniform, fine spatial discretization
time step: CFL limit

fine sampling along z / coarse along x and y
explicit: CFL limit / ADI & ADHIE: 2 x CFL limit 32



Formulation (extension of [7]).

A leapfrog FDTD method for the minimally-coupled Schrödinger equation.

Split in real and imaginary parts

Temporal discretization

Spatial discretization

[7] P. Decleer et al, J. Comput. Appl. Math., 2021 33



Properties.

A leapfrog FDTD method for the minimally-coupled Schrödinger equation.

Temporal part: 2nd-order accurate

Spatial part (in this work): uniform grid, 6th-order accurate differences and averages

→ good balance between accuracy and efficiency

Stability criterion (for time-independent EM potentials):

34



Reminder.

Self-consistent forward-backward coupled scheme.

forward via EM potentials

backward via quantum current density

35



Discretization of quantum current density.

Self-consistent forward-backward coupled scheme.

quantum current density

wave function split in real and imaginary part

apply 6th-order accurate averages and differences
36



Flowchart.

Self-consistent forward-backward coupled scheme.
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Flowchart.

Self-consistent forward-backward coupled scheme.

Note on stability of the entire scheme:

not rigorously proven (nonlinear)

choose smallest time step (usually, Maxwellian one)

no issues in all practical examples we tested

38



Numerical examples.

39



Setup.

Example 0: flying qubit interferometer (Schrödinger system).

laterally tunnel-coupled quantum wires

with small geometrical details

wires separated by thin barrier

of variable length and height

40



Setup.

Example 0: flying qubit interferometer (Schrödinger system).

laterally tunnel-coupled quantum wires

with small geometrical details

wires separated by thin barrier

of variable length and height

quantum superposition

41Note: no harm was done to animals during the research; Vande Ginste’s cat is very much in the alive state!



Results: comparison of three methods [8].

Example 0: flying qubit interferometer (Schrödinger system).

leapfrog

ADHIE

CN

302 s

44 s

3118 s

CPU time

laterally tunnel-coupled quantum wires

with small geometrical details

wires separated by thin barrier

of variable length and height

quantum superposition

CN: Crank-Nicolson 42[8] P. Decleer et al, J. Comput. Appl. Math., 2022



Setup.

Example 1: quantum state controller [9] (Maxwell-Schrödinger system).

[9] T. Takeuchi et al, Phys. Rev. A, 2015

x

z

y
incident field

(light control pulse)

nanotube

electron

fields generated
by moving charge

43



Setup.

Example 1: quantum state controller [9] (Maxwell-Schrödinger system).

x

z

y
incident field

(light control pulse)

nanotube

electron

anharmonic confining potential in the nanotube: : initial (ground) state

: desired (first excited) state

fields generated
by moving charge

44[9] T. Takeuchi et al, Phys. Rev. A, 2015



Results.

Example 1: quantum state controller (Maxwell-Schrödinger system).

explicit

ADHIE-z

26 649 s

2 398 s

CPU time

time steps

45



The shortest description ever.

Intermezzo: Kohn-Sham equations

Why?

One single time-dependent Schrödinger equation for N interacting electrons

this is a many-body problem => huge computational efforts!

Solution

Replace many-body Schrödinger equation by N Kohn-Sham equations subject to time-dependent EM fields [10]

each Kohn-Sham equation models one electron and their mutual interaction is taken care of in an approximate way

the good news: each Kohn-Sham equation has the form of a single-particle Schrödinger equation

46[10] S.K. Gosh and A.K. Dhara, Phys. Rev. A, 1988

THE THREE-BODY PROBLEM, by Cixin Liu



Setup.

Example 2: nanowire with six electrons [11] (Maxwell-Kohn-Sham system).

[11] J. Grossi et al, J. Phys.: Condens. Matter, 2020

x

z

y

nanowire

current density sheet
(RF modulated Gaussian)

47



Setup.

Example 2: nanowire with six electrons [11] (Maxwell-Kohn-Sham system).

x

z

y

nanowire

initial Kohn-Sham orbitals

ground state density

current density sheet
(RF modulated Gaussian)

confining potentials:
transverse harmonic and longitudinal anharmonic

48[11] J. Grossi et al, J. Phys.: Condens. Matter, 2020



Results.

Example 2: nanowire with six electrons  (Maxwell-Kohn-Sham system). 

time steps
explicit

ADHIE-z

419 805 s

93 920 s

CPU time

49



Conclusions.

50



assist (quantum) electronic device designers

hybrid EM/QM modeling framework

tailored toward multiscale geometries

partial implicitization in preferred directions

upper bounds for stability 

increased time step

linear scaling

“modest” Maxwell-Schrödinger and Maxwell-Kohn-Sham applications

Key takeaway points.

Conclusions.

51



alternative discretization schemes

higher-order accuracy on nonuniform grids

subgridding

multi-time stepping

generalized Lorenz and other gauge conditions

applications

intricate devices 

contacts

Dirac materials [12,13]

Ongoing and future endeavors.

Conclusions.

52[12] E. Vanderstraeten et al, J. Comput. Appl. Math., 2023
[13] J. Van den Broeck et al, Appl. Math. Model., 2023
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