Quantum Mechanical & Electromagnetic Systems Modelling Lab

1105

Analysis of Electrostatically Induced Interconnect Structures in Single-Layer Graphene via a Conservative First-Principles Modeling Technique

Emile Vanderstraeten & Dries Vande Ginste.

Outline

Motivation

Numerical method

Validation

Application: interconnect bend

Application: interconnect coupler

Conclusion

Motivation

Issues related to downscaling of Cu interconnects

Classical downscaling of the IC feature size is facing many challenges

Smaller cross-sectional dimensions of Cu interconnects leads to

- Larger resistance (geometrically + increased surface scattering)
- Increased importance of electromigration

Need for novel material for local interconnects

Motivation

Carbon allotropes as alternatives for Cu

Examples: carbon nanotubes (CNT) and graphene nanoribbons (GNR)

Pros

High current carrying capabilities

No electromigration concerns

Large mean free path

Cons

Graphene nanoribbons suffer from line edge roughness

Present growth techniques lead to a mixture of semiconducting and metallic carbon nanotubes

Solution: electrostatically induced interconnect structures in graphene

Graphene nanoribbon

Zigzag

Chiral

Motivation

Electrostatically induced interconnects in graphene

Electrons are guided by an electrostatic potential

No scattering at the boundaries

Properties can be tuned by varying shape and amplitude of the potential

Analytical solutions are scarce and understanding is insufficient at the moment

Goal: develop numerical method to analyze electrostatically induced interconnect structures in graphene

Numerical method

(2+1)D Dirac equation for charge carriers in graphene

Charge carriers in graphene adhere to a linear dispersion relation

$$i\hbar\frac{\partial}{\partial t}\Psi(x,y,t) = \left[v_F(\sigma_x p_x + \sigma_y p_y) + V(x,y)\right]\Psi(x,y,t)$$

with:

- Two component wavefunction $\Psi(x, y, t) = \begin{pmatrix} u(x, y, t) \\ v(x, y, t) \end{pmatrix}$
- Fermi velocity v_F
- Pauli matrices $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$

• Momentum operators
$$p_x = -i\hbar \frac{\partial}{\partial x}$$
 and $p_y = -i\hbar \frac{\partial}{\partial y}$

• Potential V(x, y)

Probability density $|u(x, y, t)|^2 + |v(x, y, t)|^2$

Numerical method

Spatial discretization

$$i\hbar\frac{\partial}{\partial t}\binom{u}{v} = \left[v_F\left(\sigma_x p_x + \sigma_y p_y\right) + V(x, y)\right]\binom{u}{v}$$

Staggered grid Fourth-order central difference

$$\begin{cases} \frac{d\mathbf{q}}{dt} = K\mathbf{p} \\ \frac{d\mathbf{p}}{dt} = -K^T\mathbf{q} \end{cases} \text{ with } \mathbf{q} = \begin{pmatrix} \operatorname{Im}(\mathbf{u}_1) \\ \operatorname{Re}(\mathbf{u}_2) \\ \operatorname{Re}(\mathbf{v}_1) \\ \operatorname{Im}(\mathbf{v}_2) \end{pmatrix} \text{ and } \mathbf{p} = \begin{pmatrix} \operatorname{Re}(\mathbf{u}_1) \\ \operatorname{Im}(\mathbf{u}_2) \\ \operatorname{Im}(\mathbf{v}_1) \\ \operatorname{Re}(\mathbf{v}_2) \end{pmatrix}$$

Numerical method

Temporal discretization

$$\begin{cases} \frac{d\mathbf{q}}{dt} = K\mathbf{p} \\ \frac{d\mathbf{p}}{dt} = -K^T\mathbf{q} \end{cases} \text{ with } \mathbf{q} = \begin{pmatrix} \operatorname{Im}(\mathbf{u}_1) \\ \operatorname{Re}(\mathbf{u}_2) \\ \operatorname{Re}(\mathbf{v}_1) \\ \operatorname{Im}(\mathbf{v}_2) \end{pmatrix} \text{ and } \mathbf{p} = \begin{pmatrix} \operatorname{Re}(\mathbf{u}_1) \\ \operatorname{Im}(\mathbf{u}_2) \\ \operatorname{Im}(\mathbf{v}_1) \\ \operatorname{Re}(\mathbf{v}_2) \end{pmatrix} \end{cases}$$

Symplectic fourth-order partitioned Runge-Kutta

Stepping from
$$t = n \Delta t$$
 to $t = (n + 1) \Delta t$
 $\mathbf{Q}^{n,0} = \mathbf{q}^n$
 $\mathbf{Q}^{n,1} = \mathbf{Q}^{n,0} + \Delta t B_1 K \mathbf{P}^{n,1}$
 $\mathbf{Q}^{n,2} = \mathbf{Q}^{n,1} + \Delta t B_2 K \mathbf{P}^{n,2}$
 \vdots
 $\mathbf{q}^{n+1} = \mathbf{Q}^{n,s}$
 $\mathbf{P}^{n,2} = \mathbf{P}^{n,1} - \Delta t b_1 K^T \mathbf{Q}^{n,1}$
 $\mathbf{P}^{n,3} = \mathbf{P}^{n,2} - \Delta t b_2 K^T \mathbf{Q}^{n,2}$
 \vdots
 $\mathbf{p}^{n+1} = \mathbf{P}^{n,s+1}$

with b_i and B_i well-chosen constants

Pros

Explicit update scheme

Low memory consumption due to fully inplace update scheme

Excellent long-term properties as total **mass and energy are conserved**

Validation

Comparison with analytical solution

Initial wavefunction $\Psi(x, y, t = 0) = N \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{ik_x x} e^{-x^2/(4\sigma_x^2)} e^{-y^2/(4\sigma_y^2)}$

Parameters

- k_x: 0.75 nm⁻¹
- σ_x: 5.3 nm
- σ_y: 5.3 nm
- *V*(*x*, *y*): 0 e∨
- Total duration: 29 fs

Analytical solution available!

\rightarrow Constructed numerical method is fourth-order accurate

Validation

Conservation of mass

Runge-Kutta

3.02.50.00.50.00.00.100200300Time (fs)

Partitioned Runge-Kutta

 \rightarrow Constructed numerical method is conservative

Simulation setup

Hyperbolic secant potential $V(x, y) = -\frac{V_0}{\cosh(\beta x)}$ with $\beta = \frac{2 \operatorname{arccosh}(2)}{W}$ and W the full width at half maximum

Simulation domain terminated by absorbing boundary conditions

Time dependence of incoming mode $e^{-iEt/\hbar}$ modulated with additional gaussian $1/\sqrt{2\pi\sigma_t}e^{(t-t_0)^2/(2\sigma_t)^2}$

Calculating transmission by means of Fast Fourier Transform

Snapshots

- Potential width W: 8 nm
- Potential depth V_0 : 0.25 eV
- Energy E: 0 eV
- Radius *R*: 50 nm

Snapshots

- Potential width W: 8 nm
- Potential depth V_0 : 0.25 eV
- Energy E: 0 eV
- Radius *R*: 50 nm

Snapshots

- Potential width *W*: 8 nm
- Potential depth V_0 : 0.25 eV
- Energy E: 0 eV
- Radius *R*: 50 nm

Snapshots

- Potential width *W*: 8 nm
- Potential depth V_0 : 0.25 eV
- Energy E: 0 eV
- Radius *R*: 50 nm

Snapshots

- Potential width *W*: 8 nm
- Potential depth V_0 : 0.25 eV
- Energy E: 0 eV
- Radius *R*: 50 nm

Snapshots

- Potential width *W*: 8 nm
- Potential depth V_0 : 0.25 eV
- Energy E: 0 eV
- Radius *R*: 50 nm

Snapshots

- Potential width W: 8 nm
- Potential depth V_0 : 0.25 eV
- Energy E: 0 eV
- Radius *R*: 50 nm

Snapshots

- Potential width W: 8 nm
- Potential depth V_0 : 0.25 eV
- Energy E: 0 eV
- Radius *R*: 50 nm

Transmission as a function of the radius

Parameters

- Potential width W: 8 nm
- Potential depth V_0 : 0.25 eV
- Energy E: 0 eV

Transmission equals one for large radius→ No additional, spurious dissipation

Simulation setup

Hyperbolic secant potential $V(x, y) = -\frac{V_0}{\cosh(\beta x)}$ with $\beta = \frac{2 \operatorname{arccosh}(2)}{W}$ and W the full width at half maximum

Simulation domain terminated by absorbing boundary conditions to prevent scattering at the edges

Time dependence of incoming mode $e^{-iEt/\hbar}$ modulated with additional gaussian $1/\sqrt{2\pi\sigma_t}e^{(t-t_0)^2/(2\sigma_t)^2}$

Calculating transmission by means of Fast Fourier Transform

Snapshots

Parameters

- Potential width W: 8 nm
- Potential depth V_0 : 0.25 eV
- Energy E: 0 eV
- Length coupling region L_3 : 150 nm
- Distance interconnects coupling region d_2 : 15 nm

Snapshots

Parameters

- Potential width W: 8 nm
- Potential depth V_0 : 0.25 eV
- Energy E: 0 eV
- Length coupling region L_3 : 150 nm
- Distance interconnects coupling region d_2 : 15 nm

Snapshots

Parameters

- Potential width W: 8 nm
- Potential depth V_0 : 0.25 eV
- Energy E: 0 eV
- Length coupling region L_3 : 150 nm
- Distance interconnects coupling region d_2 : 15 nm

Snapshots

Parameters

- Potential width W: 8 nm
- Potential depth V_0 : 0.25 eV
- Energy E: 0 eV
- Length coupling region L_3 : 150 nm
- Distance interconnects coupling region d_2 : 15 nm

Snapshots

Parameters

- Potential width W: 8 nm
- Potential depth V_0 : 0.25 eV
- Energy E: 0 eV
- Length coupling region L_3 : 150 nm
- Distance interconnects coupling region d_2 : 15 nm

Snapshots

Parameters

- Potential width W: 8 nm
- Potential depth V_0 : 0.25 eV
- Energy E: 0 eV
- Length coupling region L_3 : 150 nm
- Distance interconnects coupling region d_2 : 15 nm

Snapshots

Parameters

- Potential width W: 8 nm
- Potential depth V_0 : 0.25 eV
- Energy E: 0 eV
- Length coupling region L_3 : 150 nm
- Distance interconnects coupling region d_2 : 15 nm

Snapshots

Parameters

- Potential width W: 8 nm
- Potential depth V_0 : 0.25 eV
- Energy E: 0 eV
- Length coupling region L_3 : 150 nm
- Distance interconnects coupling region d_2 : 15 nm

Transmission as a function of the length of the coupling region

Parameters

- Potential width W: 8 nm
- Potential depth V_0 : 0.25 eV
- Distance interconnects coupling region d_2 : 15 nm

Transmission oscillates as a function of the length of the coupling region

Larger energy E results in larger oscillation period

Transmission as a function distance between interconnects

Parameters

- Potential width W: 8 nm
- Potential depth V_0 : 0.25 eV
- Length coupling region L_3 : 100 nm

Transmission decreases exponentially with d_2 , the distance between the interconnects in the coupling region

Larger energy E results in weaker coupling

Conclusion

Besides CNTs and GNRs, **electrostatically induced interconnects in graphene** are a possible alternative for Cu in future interconnects

Novel simulation technique for (2+1)D Dirac equation based on partitioned Runge-Kutta timestepping

Comparison with analytical solution showed that method is **fourth-order accurate and conservative**

Numerical method was employed to **analyze interconnect structures such as bends and couplers**

quest. Quantu Electron Modelli

Quantum Mechanical & Electromagnetic Systems Modelling Lab

Technologiepark – Zwijnaarde 126, B-9052 Gent, Belgium T +32 9 331 48 81 – **Emile.Vanderstraeten@ugent.be**

Emile Vanderstraeten, PhD Researcher