Quantum Mechanical & Electromagnetic Systems Modelling Lab

Master thesis @ quest

Prof. Dries Vande Ginste

162

Introduction.

Quest – quantum mechanical and electromagnetic systems modelling lab

- Founded: 1 March 2021
- **Scope** goes beyond traditional electromagnetics (see also further):
 - modelling of quantum mechanical/electromagnetic (QM/EM) devices and systems
 - electromagnetic compatibility, signal and power integrity (EMC/SI/PI)-aware design and measurements
- Novel research domain with high academic + industrial relevance
- Create knowledge + critical mass
- Reach-out to relevant (academic and industrial) partners
- Coaching/educating/training of young researchers in a new and versatile research domain

Thesis topics

- for M.Sc. students in Engineering Physics, Electrical Engineering and Physics and Astronomy
- tailored towards the specific study programs

Roadmap for semiconductors.

Example "More Moore": Intel's Core i7-8700K.

Full-wave EM simulations needed But highly **multiscale**

Example "More than Moore": 3-D Ics.

Again **multiscale** problem + very heterogeneous Also: **multiphysics** problem

Example: quantum devices.

New materials

...

- Carbon-based: graphene and carbon nanotubes (CNT)
- Transition metal dichalcogenides (TMDC)
- Topological insulators or semi-metals

Physical **phenomena**

Charge carrier confinement, ballistic transport, tunnel effect, Klein effect, ...

Modeling challenges

Quantum mechanical (QM) aspects *Ab Initio* (↔ macroscopic conductivity models) **Multiphysics (QM/EM)**

Sub-10 nm graphene nano-ribbon (GNR) tunnel field-effect transistor

Why do we construct (multiscale and multiphysics) computational techniques?

(Nano)electronic and quantum devices: heavily researched (applications / manufacturability) Physical phenomena occurring in these devices are not always well-understood

QM/EM computational tools and models lead to

a more **thorough insight** in the functioning of these novel devices and systems; **computer aided design software**, avoiding trial and error during development.

EMC/SI/PI-aware designs and measurements to gain knowledge and to validate models

Additionally, it's fun! 🤓

Maxwell-Schrödinger systems.

Flying qubit interferometer

8

Maxwell-Kohn-Sham system.

Ab initio modelling of crosstalk between nanowires

Maxwell-Dirac system.

Electrostatically induced interconnects in graphene

 $L_{3} \xrightarrow{d_{2}}$ Source
Observer L
Observer R

Electrons are guided by an electrostatic potential

No scattering at the boundaries of graphene ribbon

Properties can be tuned by varying shape and amplitude of the potential

Quantum transport modelling.

Multi-quantum well device

Layered structure of distinct semiconductors with multibarrier potential energy profile U

Application, e.g., **photodetector**

Strong light-matter interplay requires rigorous secondquantized description of **electron-photon interaction**

local density of states (LDOS) of a six-well device

photocurrent response R of one-, three- and six-well devices

EM modelling novel, emerging interconnect topologies.

Mach-Zehnder modulator with a ridge-type CPW gold electrode

Superlattice metaconductor

EM modelling of mmWave ICs and 3-D interconnect structures.

Cooperation with

EMC of automotive ICs.

Parameter Board

BCI/DPI and transient (e.g., ESD) test setups

SI-aware modelling and design.

Stochastic link analysis: connector footprint + on-PCB interconnect

Variability of eye diagram

Design for differential signaling and common-mode noise reduction

classic design

improved design

Research @ quest: mission and strategy.

Modelling of nano- and quantum devices + EMC/SI/PI-aware modelling and design of electronic devices

- Modelling tools are not only indispensable for design, but also help to understand the physics
- Nanodevices require multiphysics (Maxwell, Schrödinger, Dirac, Kohn-Sham, ...) and multiscale modelling!
- EMC/SI/PI-aware modelling tools are validated by designs and measurements
- New QM/EM and EMC/SI/PI research domain:
 - Many challenges but also many opportunities (academic / industrial)
 - Various application domains + potential strategic partners: (nano)electronics, (quantum) photonics, solid-state physics, spintronics, quantum computing, ...

Thesis @ quest.

Domain: (nano)electronic and quantum devices and systems

- EM modelling topics and hybrid QM/EM modelling topics
- EMC/SI/PI-aware modelling and design topics
- Concrete topics:
 - will be posted on Plato in April
 - can be chosen as such or can be tailored to student's interest
 - detailed discussion with quest (preferably personal appointment)

Thesis topics vs quest's strategic research agenda

- Useful for the student: knowledge / skills / future opportunities
- Useful for quest: building knowledge + tools

Conclusion.

Modelling of nano- and quantum devices

- + EM-aware design of electronic systems and (nano)devices
- New domain => groundbreaking research
- Academic and industrial need

Thesis @ quest

- Research freedom
- Close counselling by highly motivated team
- Prospect: relevant to student (academic or industrial career) and to research lab

Quantum Electrome Modelling

Quantum Mechanical & Electromagnetic Systems Modelling Lab

Technologiepark – Zwijnaarde 126, 9052 Gent, Belgium T +32 9 264 33 54 — **dries.vandeginste@UGent.be** www.QuestLab.be

Prof. Dries Vande Ginste