Exact Spectral Analysis of Traditional and Single-Source Integral Equations for a Penetrable Sphere

Martijn Huynen, Dries Vande Ginste, and Vladimir Okhmatovski

Quantum Mechanical & Electromagnetic Systems Modelling Lab

quest.

Boundary integral equations

Upsides and downsides

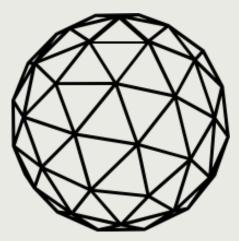
Boundary integral equations (BIEs) are characterized by their use of the Green's function and restriction of the unknowns to the boundary

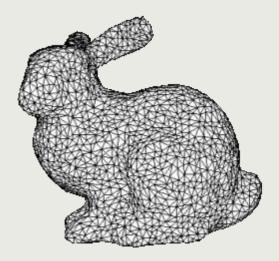
This results in a smaller system matrix and automatic inclusion of the radiation condition

but also in a dense matrix with more difficult numerical calculation, especially for **good** conductors

Moreover, BIEs are known to suffer from low-frequency breakdown, dense-mesh breakdown, internal resonances etc.

As these properties often depend on the discretization strategy, inherent analysis of the BIE's properties is difficult





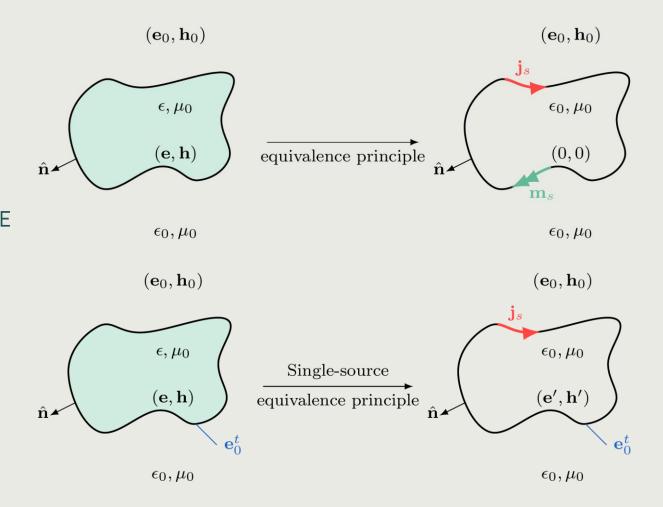
Boundary integral equations

Equivalence theorem

Central to all BIEs is the equivalence theorem, which typically introduces **two** boundary sources \mathbf{j}_s and \mathbf{m}_s to replace the material inside leading to formulation such as the PMCHWT and Müller BIE

However, by giving up control over the fields inside, a **single-source** suffices leading to formulations such as the Surface-Volume-Surface-EFIE (**SVS-EFIE**) & the Differential Surface Admittance-EFIE (**DSA-EFIE**)

Single-source formulations typically studied less in-depth



Boundary integral equations

Differential surface admittance operator

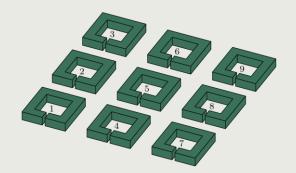
DSA approach has been successfully applied to various problem such as

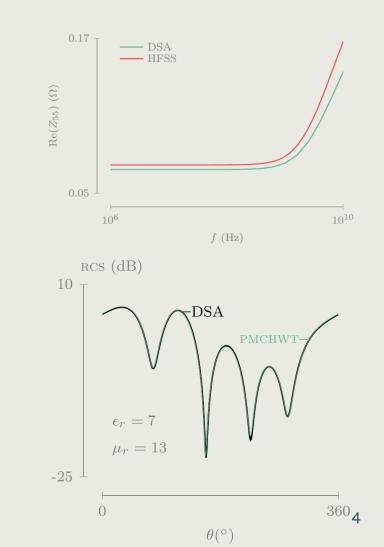
- 2-D transmission Line RLGC extraction [1]
- Arbitrary interconnect characterization [2]
- 3-D scattering & interconnects of canonical volumes [3]
- Development of magnetic interconnects [4]

However, rigorous **proof** of the DSA's rigor, inherent properties & weaknesses, and the effects of magnetic contrast is still lacking

Goal: derive analytical solution for a sphere, compute closed-form eigenvalues and study effect breakdown on condition number

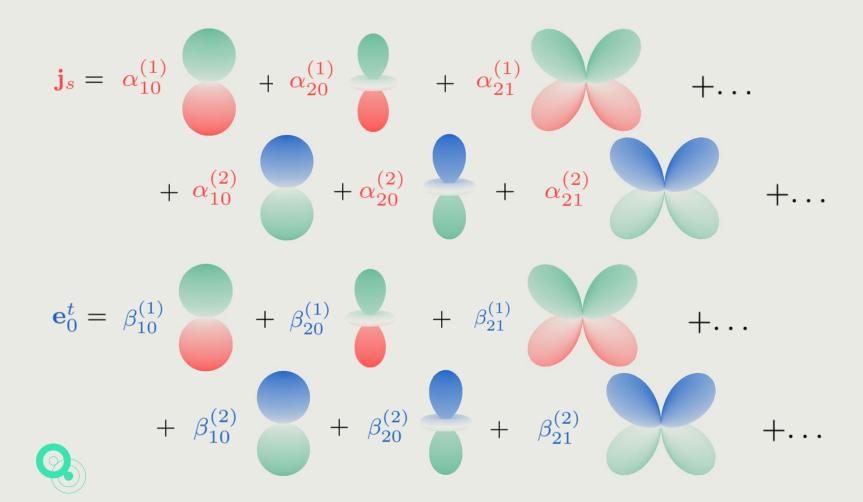
1] Demeester, IEEE MTT 2008 2] Patel, IEEE MTT 2016 [3] Huynen, IEEE MTT 2020[4] Bosman, IEEE MTT 2023





Boundary quantities

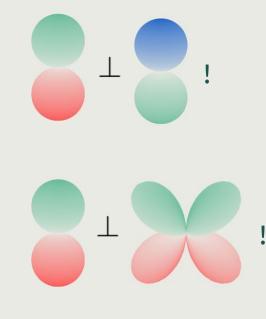
The surface current density \mathbf{j}_s and tangential electric field \mathbf{e}_0^t are decomposed into two sets of vector spherical harmonics

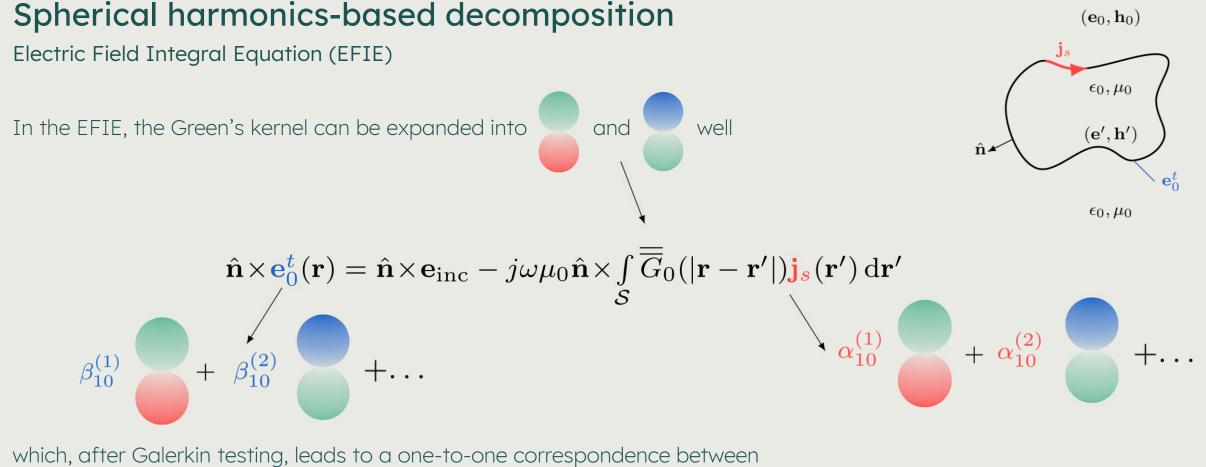


 $\hat{\mathbf{n}}$ $\boldsymbol{\hat{\mathbf{c}}}_{0}, \mu_{0}$ $(\mathbf{e}', \mathbf{h}')$ \mathbf{e}_{0}^{t}

 ϵ_0, μ_0

 $({\bf e}_0,{\bf h}_0)$





which, after Galerkin testing, leads to a one-to-one correspondence every $\alpha_n^{(1)}$ and $\beta_n^{(1)}$, and every $\alpha_n^{(2)}$ and $\beta_n^{(2)}$

$$\beta_{nm}^{(1)} = \gamma_{nm} + \mathcal{Z}_n^{(1)} \alpha_{nm}^{(1)}$$

$$\beta_{nm}^{(2)} = \gamma_{nm} + \mathcal{Z}_n^{(2)} \alpha_{nm}^{(2)}$$

Q

 $\mathcal{Z}_n^{(1)} \propto [k_0 a j_n(k_0 a)]'[k_0 a h_n^{(2)}(k_0 a)]'$

$$\mathcal{Z}_n^{(2)} \propto k_0 a j_n(k_0 a) \, k_0 a h_n^{(2)}(k_0 a)$$

Differential surface admittance operator (DSA)

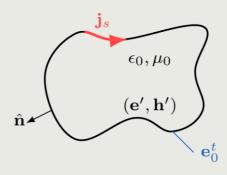
The DSA operator can be constructed in various ways to find the electric surface current density \mathbf{j}_s [5], [6]

The original formulation and its 3-D extension rely on the eigenmodes of a PEC cavity and avoid the Green's function in the medium

For a sphere, the two groups of eigenmodes are of the form:

 $\mathbf{h}_{nms}^{\mathrm{TM}} \propto j_n(k_{ns}r)$





 ϵ_0, μ_0

 $({\bf e}_0, {\bf h}_0)$

7

[6] Patel, IEEE AWPL 2017

 $({\bf e}_0,{\bf h}_0)$

 ϵ_0, μ_0

 $(\mathbf{e}',\mathbf{h}')$

 ϵ_0, μ_0

Differential surface admittance operator (DSA)

With these spherical harmonics form of the eigenmodes, we discretize

which, after Galerkin testing, leads to a one-to-one correspondence between every $\alpha_n^{(1)}$ and $\beta_n^{(1)}$, and every $\alpha_n^{(2)}$ and $\beta_n^{(2)}$

$$\alpha_n^{(1)} = \mathcal{Y}_n^{(1)} \beta_n^{(1)} \qquad \qquad \alpha_n^{(2)} = \mathcal{Y}_n^{(2)} \beta_n^{(2)}$$

 $\mathbf{j}_{s}(\mathbf{r}) = -\eta \sum_{nms} \left[\frac{\mathcal{K}_{nms}}{\mathcal{N}_{nms}^{2}} \int_{\mathcal{S}} (\hat{\mathbf{n}} \times \mathbf{h}_{nms}^{*}(\mathbf{r}')) \cdot \mathbf{e}_{0}^{t}(\mathbf{r}') \, \mathrm{d}\mathbf{r}' \right] (\hat{\mathbf{n}} \times \mathbf{h}_{nms}(\mathbf{r})) + \alpha_{10}^{(1)} + \alpha_{10}^{(2)} + \dots + \beta_{10}^{(2)} + \dots + \beta_{10}^{(2)} + \dots + \dots + \dots$

$$\mathcal{Y}_{n}^{(1)} \propto \sum_{s} \frac{-2k_{ns}^{2} \left(k^{2} - k_{0}^{2}\right)}{\left(k_{ns}^{2} - k^{2}\right) \left(k_{ns}^{2} - k_{0}^{2}\right) \left[1 - \frac{n(n+1)}{k_{ns}^{2}}\right]} \qquad \qquad \mathcal{Y}_{n}^{(2)} \propto \sum_{s} \frac{-2\kappa_{ns}^{2} \left(k^{2} - k_{0}^{2}\right)}{\left(\kappa_{ns}^{2} - k^{2}\right) \left(\kappa_{ns}^{2} - k_{0}^{2}\right)}$$

Analytical solution

With both operators discretized and resulting in simple one-to-one relations, the system is easily solved:

$$\beta_{nm}^{(1)} = \gamma_{nm} / (1 - \mathcal{Z}_n^{(1)} \mathcal{Y}_n^{(1)}) \quad \alpha_{nm}^{(1)} = \mathcal{Y}_n^{(1)} \gamma_{nm} / (1 - \mathcal{Z}_n^{(1)} \mathcal{Y}_n^{(1)})$$

$$\hat{\mathbf{n}}$$

 $({\bf e}_0, {\bf h}_0)$

$$\beta_{nm}^{(2)} = \gamma_{nm} / (1 - \mathcal{Z}_n^{(2)} \mathcal{Y}_n^{(2)}) \quad \alpha_{nm}^{(2)} = \mathcal{Y}_n^{(2)} \gamma_{nm} / (1 - \mathcal{Z}_n^{(2)} \mathcal{Y}_n^{(2)})$$

Since the solution is fully analytical, it should be rigorous compared to the exact solution

However, the DSA elements contain an infinite sum

- Convergence rate?
- Effect different materials?
- Does it jeopardize the DSA's exactness?

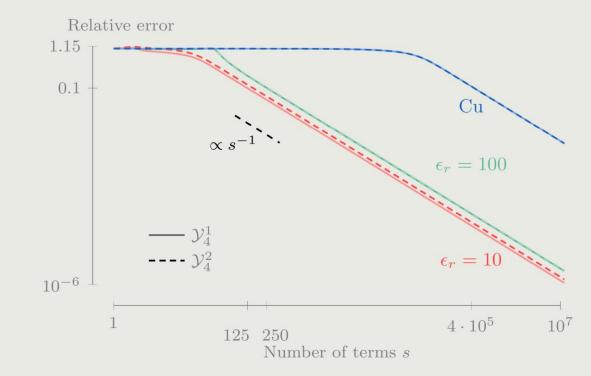
Closed-form DSA elements

Analytical solution

The sums require the zeros of the Bessel functions, which need to be computed numerically

The sums only converge at a rate s⁻¹, which is slow if machine precision is desirable

For high-contrast materials or good conductors a very slow initial convergence is observed



Solution: closed-form expression based on generalized Fourier series

Closed-form DSA elements

Analytical solution

Just like for the conventional Fourier series, the function ${\bf f}$ is projected on a set of orthogonal basis functions

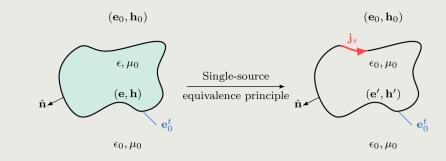
$$f(r) \sim \sum_{s=0}^{\infty} \frac{\langle f, j_n(k_{ns}r) \rangle}{\|j_n(k_{ns}r)\|^2} j_n(k_{ns}r)$$

By choosing the correct **f**, the Fourier sum becomes $\mathcal{Y}_n^{(1)}$ and $\mathcal{Y}_n^{(2)}$

hence their **closed form** is found to be

$$\mathcal{Y}_{n}^{(1)} \propto \frac{(ka)^{2} j_{n}(ka)}{[kaj_{n}(ka)]'} - \frac{(k_{0}a)^{2} j_{n}(k_{0}a)}{[k_{0}aj_{n}(k_{0}a)]'} \qquad \qquad \mathcal{Y}_{n}^{(2)} \propto ka \frac{[kaj_{n}(ka)]'}{j_{n}(ka)} - k_{0}a \frac{[k_{0}aj_{n}(k_{0}a)]}{j_{n}(k_{0}a)}$$

Leading to fast, accurate evaluations for the final solution



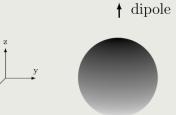
Numerical results

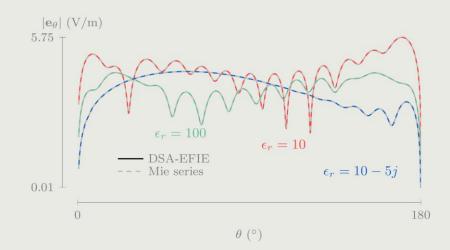
Radial dipole

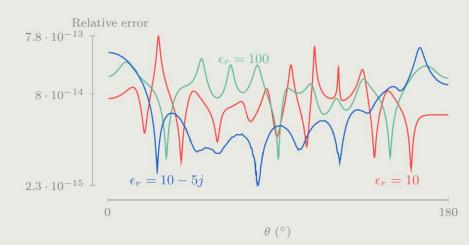
Parameters set-up

- Radius sphere: 1 m
- Distance dipole from origin: 10 m
- Dipole moment: 1 A m
- Frequency: $k_0 = 4\pi / 1m$
- # terms in Mie series: 50
- # terms in DSA-EFIE: 50
- 3 different materials:
 - Low-contrast dielectric
 - High-contrast dielectric
 - Lossy dielectric

> 12 significant digits compared to the Mie series so the DSA-EFIE provides a rigorous solution







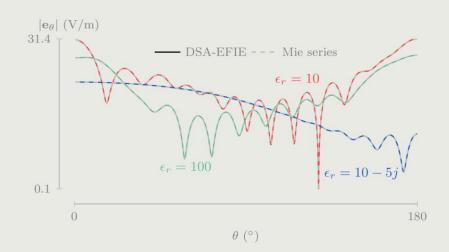
Numerical results

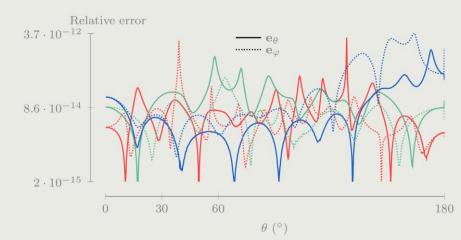
Tangential dipole

Parameters set-up

- Radius sphere: 1 m
- Distance dipole from origin: 10 m
- Dipole moment: 1 A m
- Frequency: $k_0 = 4\pi / 1m$
- # terms in Mie series: 50
- # terms in DSA-EFIE: 50
- 3 different materials:
 - Low-contrast dielectric
 - High-contrast dielectric
 - Lossy dielectric

> 12 significant digits compared to the Mie series so the DSA-EFIE provides a rigorous solution





13

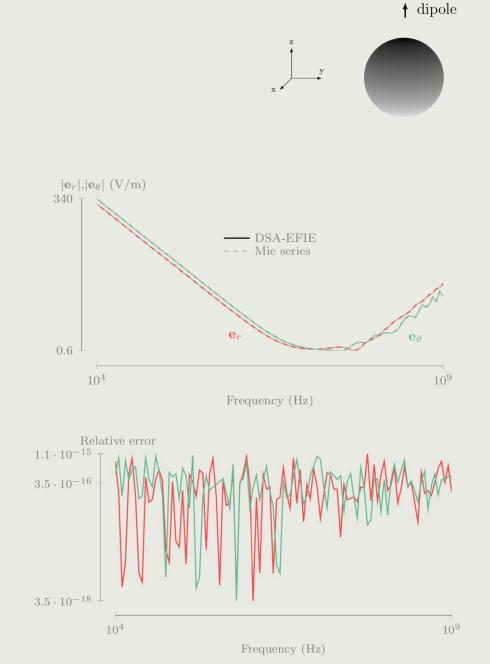
Numerical results

Radial dipole, good conductor

Parameters set-up

- Radius sphere: 1 m
- Distance dipole from origin: 10 m
- Dipole moment: 1 A m
- Frequency: $k_0 = 4\pi / 1m$
- # terms in Mie series: 50
- # terms in DSA-EFIE: 50
- Copper (σ =5,8e7 S/m) from 10 kHz up to 1 GHz
- Observation point at 1 m above the surface for $\theta = \pi/4$
- > 15 significant digits compared to the Mie series

so the DSA-EFIE provides a rigorous solution for this difficult-to-handle class of materials



Spectral analysis

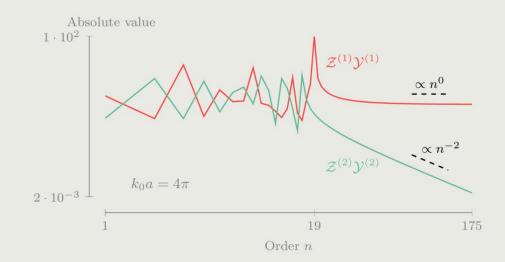
Dense-mesh breakdown

 $\mathcal{Z}_n^{(1)}\mathcal{Y}_n^{(1)}$ and $\mathcal{Z}_n^{(2)}\mathcal{Y}_n^{(2)}$ are the eigenvalues of the DSA-EFIE system

For large n, one set of eigenvalues accumulates at zero, while the other stays constant

this leads to dense-mesh breakdown

Choice of Sobolev space does not solve the issue



Comparison:

- EFIE [7] : Sobolev H^{-1/2} (div) testing avoids dense-mesh breakdown
- MFIE [7] : L² testing avoids dense-mesh breakdown
- SVS-EFIE-J [8]: Sobolev H^{-1/2} (div) testing avoids dense-mesh breakdown
- SVS-EFIE-M [9]: L² testing avoids dense-mesh breakdown

Spectral analysis

Low-frequency breakdown

 $\mathcal{Z}_n^{(1)}\mathcal{Y}_n^{(1)}$ and $\mathcal{Z}_n^{(2)}\mathcal{Y}_n^{(2)}$ are the eigenvalues of the DSA-EFIE system

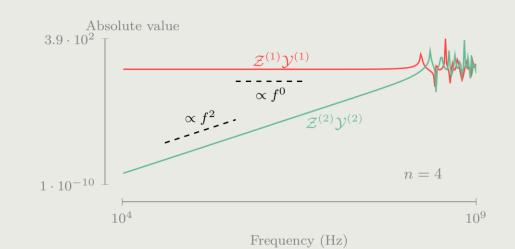
For small f, one set of eigenvalues accumulates at zero, while the other stays constant

this leads to low-frequency breakdown

Inherent to the EFIE so Sobolev testing space does not solve this issue

Comparison:

- EFIE [7] : Inherent low-frequency breakdown
- MFIE [7] : Absence of low-frequency breakdown
- SVS-EFIE-J [8]: Inherent low-frequency breakdown
- SVS-EFIE-M [9]: Absence of low-frequency breakdown



Conclusion

& future work

We presented an **analytic solution** to the **Differential Surface Admittance** operator combined with the EFIE for scattering at a **sphere**

Analytical solution is **devoid** of any remaining **summation** or **numerical integration** and provides >12 significant digits

Spectral analysis confirms **dense-mesh breakdown** and **low-frequency breakdown**

Developed exact solution is an excellent analytical tool to develop new DSA-BIE formulations with preferable properties

Quantum Mechanical & Electromagnetic Systems Modelling Lab

Technologiepark – Zwijnaarde 126, B-9052 Gent, Belgium Martijn.huynen@ugent.be www.QuestLab.be

Martijn HUYNEN, Post-doctoral researcher