

We3I-2

Analytic Differential Admittance Operator Solution of a Dielectric Sphere under Radial Dipole Illumination M. Huynen¹, D. De Zutter¹, D. Vande Ginste¹, V. Okhmatovksi², ¹Quest/IDLab, Ghent University/imec, Ghent, Belgium ²Dep. Of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Canada

- Single-source boundary integral equations
- The differential surface admittance operator
- Spherical harmonics
- Generalized Fourier series
- Numerical analysis
- Conclusion & future work

Single-source boundary integral equation \blacksquare

- When applying the equivalence theorem, one can introduce 1 or 2 surface current densities
- Single source approaches sacrifice control over fields in the replaced medium for simplicity
- However, properties of such approaches are less researched

Differential surface admittance operator \blacksquare

- One approach is the differential surface admittance operator (DSA)
	- Has been successfully applied to
		- 2-D transmission line RLGC extraction [1]
		- Arbitrary interconnect characterization [2]
		- 3-D scattering & interconnects of canonical volumes [3]
		- Development of magnetic interconnects [4]
	- However, rigorous proof of the DSA's exactness, its inherent properties & weaknesses, and the effects of magnetic contrast is still lacking

[1] Demeester, IEEE MTT 2008 [3] Huynen, IEEE MTT 2020 [2] Patel, IEEE MTT 2016 [4] Bosman, IEEE MTT 2023

Differential surface admittance operator \blacksquare

- Various techniques exist to construct the electric surface current density j_s (see e.g. [1,2])
- The differential surface admittance (DSA) operator uses the eigenmodes of the volume to find j_s without relying on the Green's function:

$$
\mathbf{j}_s(\mathbf{r}) = \mathcal{Y} \circ \mathbf{e}_0^t = -\eta \sum_{\nu} \left[\frac{\mathcal{K}_{\nu}}{\mathcal{N}_{\nu}^2} \int_{\mathcal{S}} (\hat{\mathbf{n}} \times \mathbf{h}_{\nu}^*(\mathbf{r}')) \cdot \mathbf{e}_0^t(\mathbf{r}') d\mathbf{r}' \right] (\hat{\mathbf{n}} \times \mathbf{h}_{\nu}(\mathbf{r}))
$$
\n[1] Huynen, IEEE AWPL 2016\n\nMagnetic eigenmodes

[2] Patel, IEEE AWPL 2017

Differential surface admittance operator \blacksquare

- Combined with the electric field integral equation (EFIE) $\hat{\mathbf{n}} \times \mathbf{e}_0^t(\mathbf{r}) = \hat{\mathbf{n}} \times \mathbf{e}_{\text{inc}}(\mathbf{r}) + \mathcal{T} \circ \mathbf{j}_s = \hat{\mathbf{n}} \times \mathbf{e}_{\text{inc}} - j\omega\mu_0 \hat{\mathbf{n}} \times \int_{S} \overline{\overline{G}}_0(|\mathbf{r} - \mathbf{r}'|) \mathbf{j}_s(\mathbf{r}') d\mathbf{r}'$ the complete system can be solved
	- But what about the properties of the DSA operator: low-/high-frequency breakdown, functional space mapping?
	- Let us turn to the sphere to get a fully analytical solution for all operators involved

Decomposition into spherical harmonics \blacksquare

• We start by expanding the unknowns \mathbf{j}_s and \mathbf{e}_0^t on the boundary:

$$
\mathbf{j}_s = \sum_{n=0}^N \sum_{m=-n}^n \alpha_{nm}^{(1)} \mathbf{u}_{nm}^{(1)} + \alpha_{nm}^{(2)} \mathbf{u}_{nm}^{(2)} \qquad \mathbf{e}_0^t = \sum_{n=0}^N \sum_{m=-n}^n \beta_{nm}^{(1)} \mathbf{u}_{nm}^{(1)} + \beta_{nm}^{(2)} \mathbf{u}_{nm}^{(2)}
$$

• The basis functions are two orthogonal sets of vector spherical harmonics. E.g.:

$$
\mathbf{u}_{nm}^{(1)} \propto \qquad \qquad (\mathbf{n}, \mathbf{m}) = (\mathbf{1}, \mathbf{0}) \qquad \qquad \mathbf{u}_{nm}^{(2)} \propto \qquad \qquad (\mathbf{n}, \mathbf{m}) = (\mathbf{2}, \mathbf{-1})
$$

Symmetry radial electric dipole

• If we consider a sphere excited by a dipole oriented along the zaxis, the results will be independent of φ (thus m=0)

• Moreover, only the first set of basis functions is required

$$
\mathbf{j}_s = \sum_{n=0}^N \sum_{m=-n}^n \alpha_{n0}^{(1)} \mathbf{u}_{n0}^{(1)} + \alpha_{nm}^{(2)} \mathbf{\bar{u}}_{nm}^{(2)} \qquad \mathbf{e}_0^t = \sum_{n=0}^N \sum_{m=-n}^n \beta_{n0}^{(1)} \mathbf{u}_{n0}^{(1)} + \beta_{nm}^{(2)} \mathbf{\bar{u}}_{nm}^{(2)}
$$

EFIE and excitation

• The Green's dyadic & the dipole's radiation pattern can be expanded in vector spherical harmonics as well [1].

EFIE and excitation

• Since these basis functions are orthogonal, testing with $\mathbf{u}_{nm}^{(1)}$ and integrating analytically, isolates a single $\alpha_n^{(1)}$, $\beta_n^{(1)}$ pair [1]

$$
\hat{\mathbf{n}} \times \mathbf{e}_0^t(\mathbf{r}) = \hat{\mathbf{n}} \times \mathbf{e}_{\text{inc}} - j\omega\mu_0 \hat{\mathbf{n}} \times \int \overline{\overline{G}}_0(|\mathbf{r} - \mathbf{r}'|) \mathbf{j}_s(\mathbf{r}') d\mathbf{r}'
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \down
$$

$$
\mathcal{Z}_n \propto \left[k_0 a h_n^{(2)}(k_0 a) \right]' \left[k_0 a j_n(k_0 a) \right]'
$$

[1] Hsiao et al. IEEE TAP 1997

Eigenmodes spherical cavity

-
- The magnetic eigenmodes of a spherical PEC cavity \mathbf{h}_{ν} are of the same form as the vector spherical harmonics $\mathbf{u}_{nm}^{(1)}$ & $\mathbf{u}_{nm}^{(2)}$:

$$
\mathbf{h}_{nms} \propto r j_n (k_{ns} r) \mathbf{u}_{nm}^{(2)} \qquad \mathbf{a} \qquad \mathbf{h}_{nms} \propto r j_n (k_{ns} r) \mathbf{u}_{nm}^{(1)}
$$

• The same orthogonality applies so...

Differential surface admittance

• ... testing with $\mathbf{u}_{nm}^{(1)}$, isolates a single $\alpha_n^{(1)}, \beta_n^{(1)}$ pair:

$$
\mathbf{j}_{s} = \sum_{n=0}^{N} \alpha_{n}^{(1)} \mathbf{u}_{n0}^{(1)}
$$
\n
$$
\alpha_{n}^{(1)} = \mathcal{Y}_{n} \beta_{n}^{(1)}
$$
\nwith\n
$$
\alpha_{n}^{(1)} = \mathcal{Y}_{n} \beta_{n}^{(1)}
$$

$$
\mathcal{Y}_n \propto \sum_{s=1}^{\infty} \frac{2k_{ns}^2 (k^2 - k_0^2)}{(k_{ns}^2 - k^2)(k_{ns}^2 - k_0^2) \left[1 - \frac{n(n+1)}{x_{ns}^2}\right]} \qquad \mathbf{Q} \qquad [x_{ns}j_n(x_{ns})]' = 0
$$

Summary

- By expanding the unknown boundary quantities in spherical harmonics: $\mathbf{j}_s = \sum_{n=0}^N \alpha_n^{(1)} \mathbf{u}_{n0}^{(1)}$ $\mathbf{e}_0^t = \sum_{n=0}^N \beta_n^{(1)} \mathbf{u}_{n0}^{(1)}$
- and fully making use of the spherical harmonics expansions of the EFIE and DSA operator, we have found analytical solutions for all $\alpha_n^{(1)}$ and $\beta_n^{(1)}$ coefficients

$$
\beta_n^{(1)} = \gamma_n + \mathcal{Z}_n \alpha_n^{(1)} \qquad \qquad \alpha_n^{(1)} = \mathcal{Y}_n \beta_n^{(1)}
$$

Sum over the Bessel zeroes

- The factor \mathcal{Y}_n contains an infinite sum that needs to be evaluated
- Evaluation requires x_{ns} , which need to be computed numerically
- A lot of terms are required to approach the asymptote \mathbb{R}
- Closed form exists?

Generalized Fourier series

- Yes, using a generalized $f(r) = \sum_{s=1}^{\infty} c_s j_n(k_{ns}r) = \sum_{s=1}^{\infty} \frac{\langle f, j_n(k_{ns}r) \rangle}{||j_n(k_{ns}r)||^2} j_n(k_{ns}r),$ Fourier series $\ddot{\circ}$
- This function f results in a similar sum

$$
(r) = \frac{(ka)^2}{[kaj_n(ka)]'}j_n(kr),
$$

• Closed form contains just a few function evaluations $\cdot\cdot$

$$
\mathcal{Y}_n \propto \sum_{s=1}^{\infty} \frac{2k_{ns}^2 (k^2 - k_0^2)}{(k_{ns}^2 - k^2)(k_{ns}^2 - k_0^2) \left[1 - \frac{n(n+1)}{x_{ns}^2}\right]}
$$

$$
\mathcal{Y}_n \propto \frac{(ka)^2 j_n(ka)}{[kaj_n(ka)]'} - \frac{(k_0a)^2 j_n(k_0a)}{[k_0aj_n(k_0a)]'}
$$

Closed form: convergence

- Relative error of the series compared to the closed sum for $n=1$ & 4
- Sum converges very slowly \bullet
- Analytical expression provides tremendous speed-up & accuracy improvement of the complete solution $\ddot{\psi}$

• With the \mathcal{Y}_n sum issue solved, the coefficients for the electric field $\beta_n^{(1)}$ are fully defined:

$$
\alpha_n^{(1)} = \mathcal{Y}_n \gamma_n / (1 - \mathcal{Z}_n \mathcal{Y}_n) \qquad \beta_n^{(1)} = \gamma_n / (1 - \mathcal{Z}_n \mathcal{Y}_n)
$$

• With the unknown coefficients fully computed, we can reconstruct the total fields

Numerical analysis

- Sphere with radius 1 m
- Dipole at 10 m on z-axis
- Tangential electric field for k=4π/1 m
- # terms in series = 50
- Excellent agreement with Mie series for lossy, low- and high- contrast dielectric $\ddot{\psi}$

Numerical analysis

- Sphere with radius 1 m
- Dipole at 10 m on z-axis
- Tangential electric field for $k=4π/1m$
- # terms in series = 50

• Match of at least 12 significant digits $\ddot{\mathbf{c}}$

Symmetry tangential electric dipole

• If we consider a sphere excited by a dipole oriented along the xaxis, the results have a $sin/cos(\varphi)$ (thus m=-1/1) dependency

• Now, the two sets of basis functions are required

$$
\mathbf{j}_s = \sum_{n=0}^N \sum_{m=-n}^n \alpha_{nm}^{(1)} \mathbf{u}_{nm}^{(1)} + \alpha_{nm}^{(2)} \mathbf{u}_{nm}^{(2)} \quad \mathbf{e}_0^t = \sum_{n=0}^N \sum_{m=-n}^n \beta_{nm}^{(1)} \mathbf{u}_{nm}^{(1)} + \beta_{nm}^{(2)} \mathbf{u}_{nm}^{(2)}
$$

Numerical analysis

- Dipole at 10 m on x-axis
- Tangential electric field (θ) for k=4π/1 m
- # terms in series = 50
- Excellent agreement with Mie series for lossy, low- and high- contrast dielectric $\ddot{\mathbf{c}}$

Numerical analysis

- Sphere with radius 1 m
- Dipole at 10 m on x-axis
- Tangential electric field (φ) for $k=4π/1m$
- \cdot # terms in series = 50

• Match of at least 12 significant digits $\ddot{\mathbf{c}}$

Dense mesh breakdown

- Complete DSA-EFIE system has two sets of eigenmodes
- For large n, the red set suffers from dense mesh breakdown; the green set does not (different asymptotes)
- Correct choice of Sobolev testing space can solve this issue

Low-frequency breakdown

- Complete DSA-EFIE system has two sets of eigenmodes
- For small f, the two sets diverge which leads to low-frequency breakdown
- Caused by EFIE and can thus be solved with preconditioner or augmented EFIE

Conclusion & Future work

- We presented an analytical solution of the DSA-EFIE including a closed sum for the infinite series
- Improved convergence leads to a 12-digit precision
- Investigated the total system's spectrum

Future work

- Determine impact test function space
- Extension to magnetic DSA operator

