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* Constructing a numerical solver for electron optics phenomena in
graphene

* Studying the transmission properties of electronic waveguide bends In
graphene

* Examining the effect of Dirac point fluctuations
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Graphene and the Dirac equation

* Linear instead of parabolic dispersion relation

* Charge carriers are described by a (2+1)D massless Dirac equation
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* Appearance of “relativistic’ phenomena



Electron optics in graphene

* Charge carriers behave similarly as light in
ordinary optics E E_V

* The kinetic energy (E-V) takes over the role Reflected
of refractive index.

»

* Kinetic energy can be zero or negative

* Possible applications: Veselago lens, beam
splitters, reflectors, transistors, waveguides...

— High contrast leads to excellent
confinement

Incident Transmitted
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Dirac point fluctuations

* Type of disorder in graphene layers

* Local variations of the potential

* Neutral graphene corresponds to a system of electron/hole puddles
* QOrigin: strain, substrate inhomogeneities

* Complicates the desired confinement in wavequides




Model for Dirac point fluctuations

* Additional onsite correlated potential
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Numerical method

* Fourth-order accurate time-domain solver for the (2+1)D

Dirac equation
J72N

* Spatial discretization J+3/2 O] ® ] o
— Staggered grid [1]
— Fourth-order central difference

J+1
* Novel timestepping scheme

— Partitioned Runge-Kutta method instead of standard ; 4 1/2 ] @ ] ®
Runge-Kutta

— Fourth-order accurate _ U v

— Lower memory consumption owing to fully in-place J
update scheme X

— Conservation of mass and energy i+ 1/2 1 +1 i43)/2

[1] R. Hammer, W. P6tz, A. Arnold, “Single-cone real-space finite difference scheme for the time-dependent Dirac equation,” Journal of
Computational Physics, vol. 265, pp. 50-70, 2014. 10
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Results for the electronic waveguide bend

* |deal situation
— Mode adaptation losses
— Low losses, even for very small radii
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Results for the electronic waveguide bend

* With Dirac point fluctuations (DPFs)
— Higher transmission than ideal situation is possible
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Results for the electronic waveguide bend

* With Dirac point fluctuations (DPFs)
— Decreasing the correlation length n increases the deviation

n=5nm W = 5meV n=5nmm W =5meV

L N S 150

- i ' ol S
-
10

100 {

Transmission
y (nm)

0.94 —==|deal 50 -
— With DPFs median
With DPFs min/max

0.92 4

10 20 30 40 50
R (nm)

15



Results for the electronic waveguide bend

* With Dirac point fluctuations (DPFs)
— Increasing the standard deviation W increases the deviation
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Results for the electronic waveguide bend

* With Dirac point fluctuations (DPFs)
— Example with Transmission = 0.40
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Conclusion

* Constructed numerical solver capable of simulating electron optics
phenomena and applications in graphene

* Electronic waveguide bends can be obtained that exhibit excellent
transmission properties

* Dirac point fluctuations must be considered when studying electron
optics phenomena in graphene
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