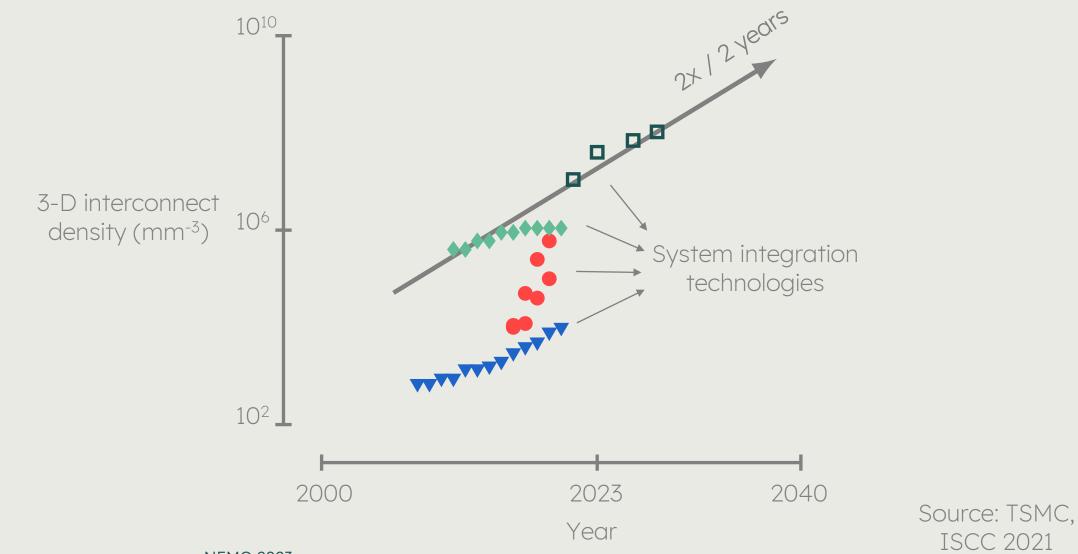
Quantum Mechanical & Electromagnetic Systems Modelling Lab

Fokas Based Dirichlet-to-Neumann Operators for Accurate Signal Integrity Assessment of Interconnects

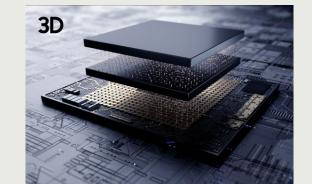
Martijn Huynen, Dries Bosman, Daniël De Zutter, Dries Vande Ginste

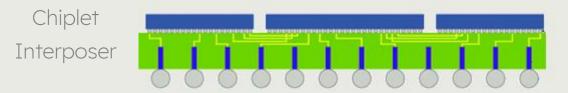
Interconnect scaling projected to keep doubling to accommodate bandwidth demand



New approaches and materials are required to meet this demand

3-D Integrated circuits (3DICs) exploit the vertical dimension





Metaconductor

Application of more exotic materials, e.g., magnetic components, present opportunities and challenges

Ground Signal Ground Current H_x g w g Glass

NEMO 2023

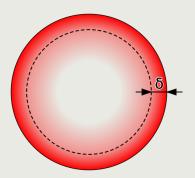
Advances in computational methods are needed to enable design methodologies

Miniaturization & increased operating frequency ask for more accurate and complete modeling

(Un)wanted intricate geometric details become increasingly impactful

Full wave solvers indispensable to capture effects such as the skin effect or the proximity effect

Challenging materials such as semiconductors or magnetic materials often not accurately modeled over large frequency ranges in (commercial) solvers



At quest, we developed a new approach to tackle these challenges

Full RLGC characterization of interconnects with arbitrary polygonal cross-sections

Broadband capturing of skin and proximity effects in conductors and magnetic materials

Applicable to emerging interconnect topologies

Assess signal integrity performance of novel solutions

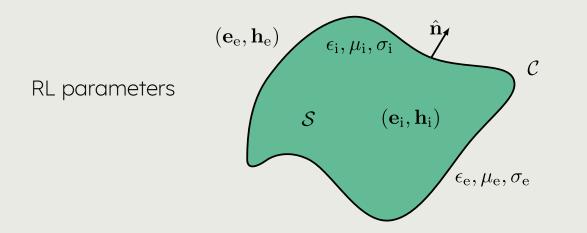
The Dirichlet-to-Neumann operator

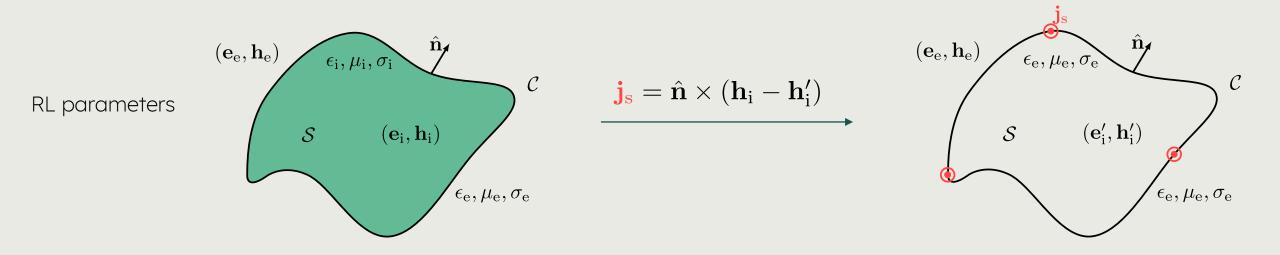
Fokas computation of the Laplace equation

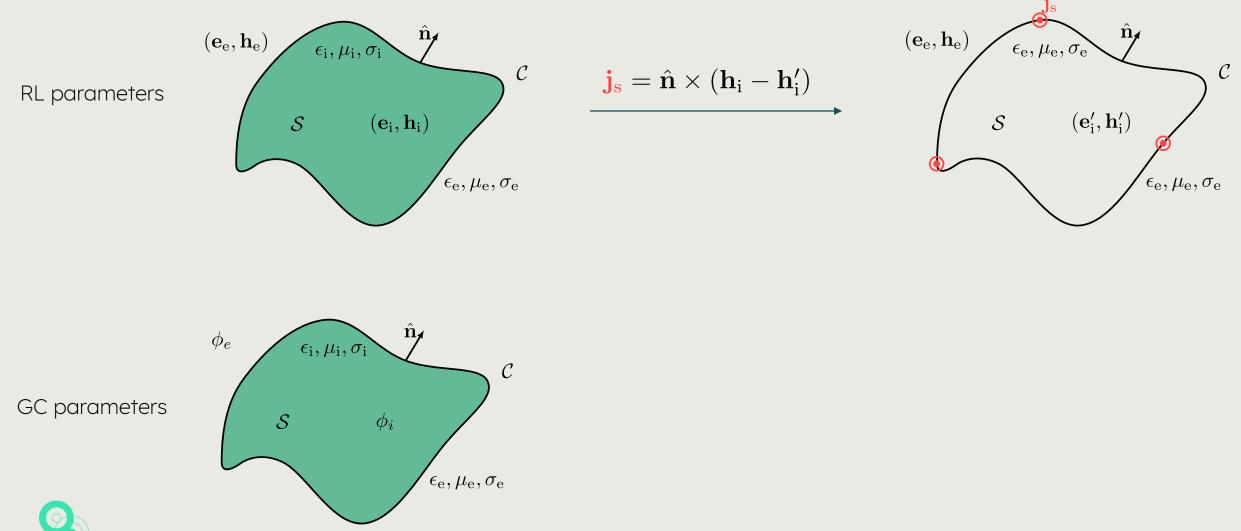
Interconnect analysis

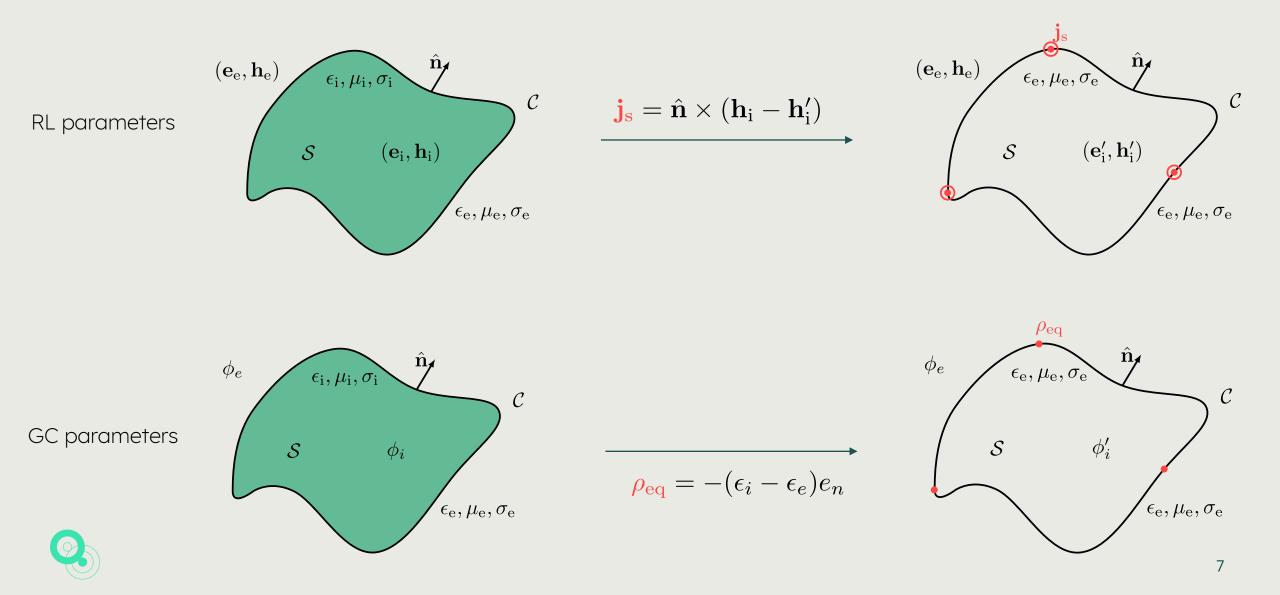
Metaconductor performance

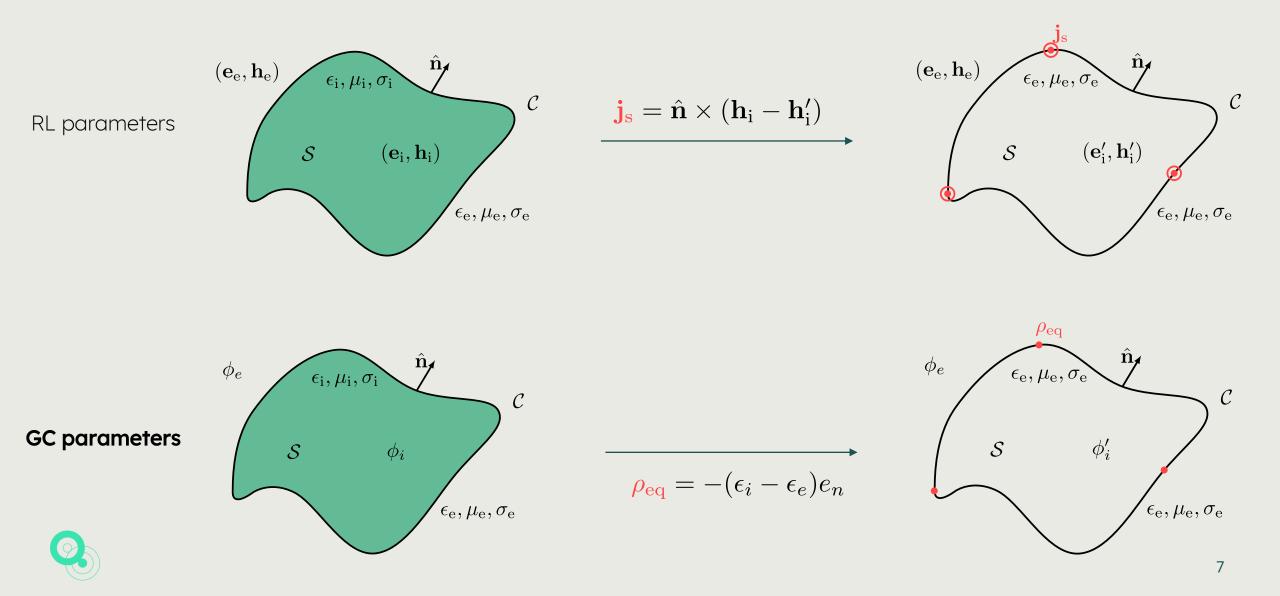
Future work

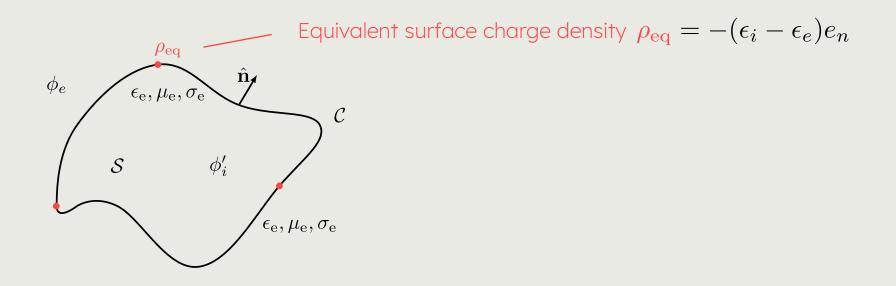


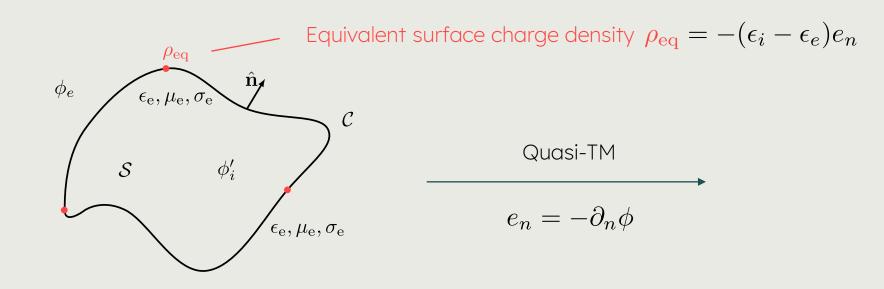


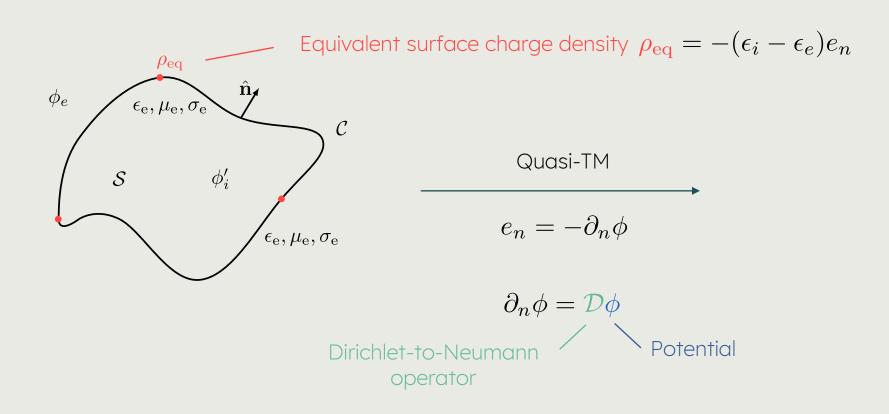


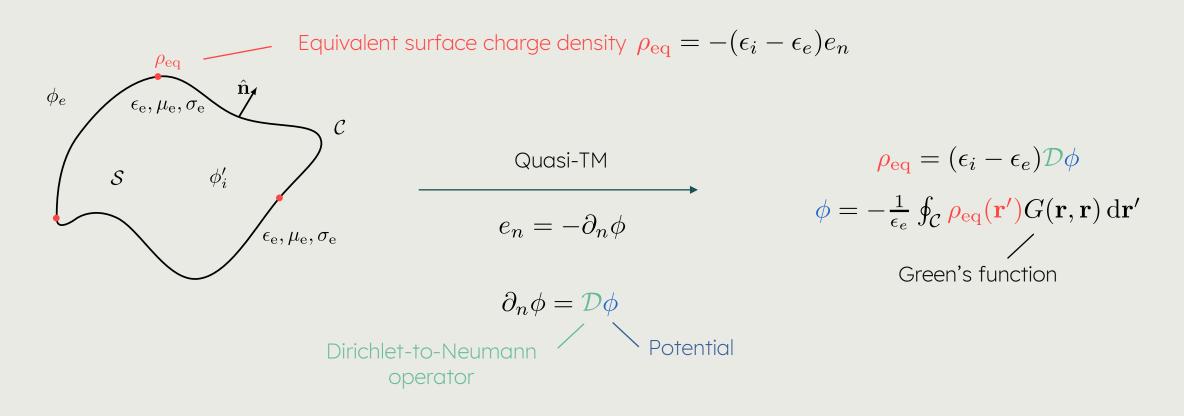


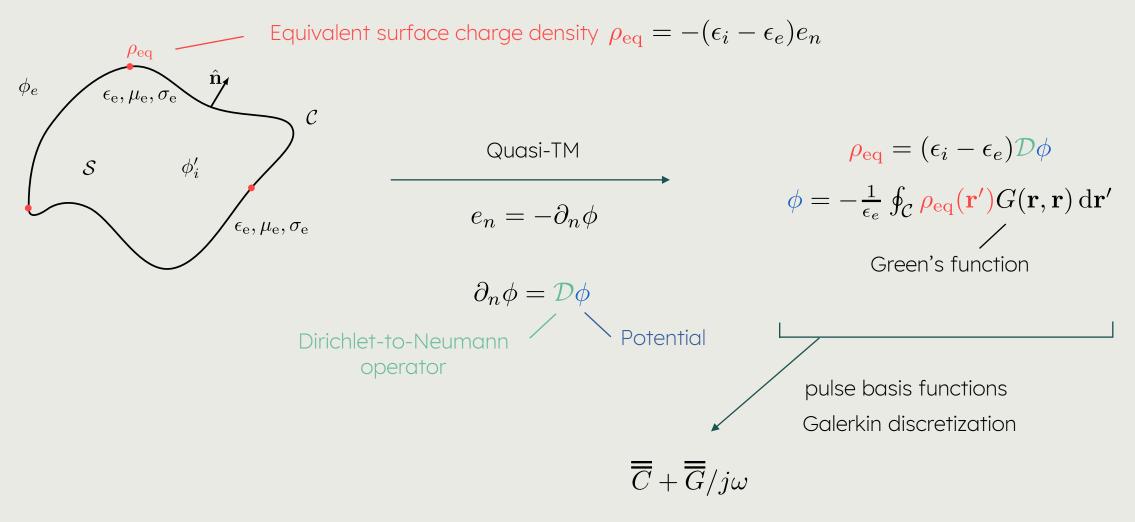






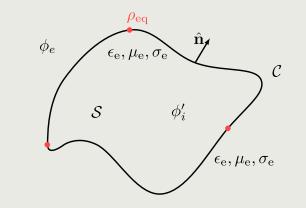






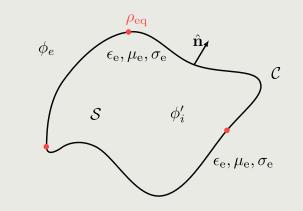
Capacitance matrix

Inside S, the potential ϕ obeys the Laplace equation $abla^2\phi=0$



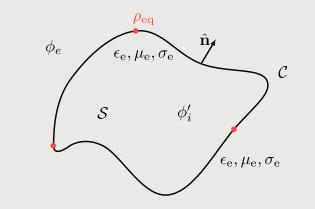
Inside ${\cal S}$, the potential ϕ obeys the Laplace equation $abla^2 \phi = 0$

On ${\mathcal C}$, the potential ϕ is "known" and we are looking for $\partial_n \phi$



Inside *S*, the potential ϕ obeys the Laplace equation $abla^2 \phi = 0$

On ${\mathcal C}$, the potential ϕ is "known" and we are looking for $\partial_n \phi$



According to the Fokas method, this boundary value problem can be cast as a global relation

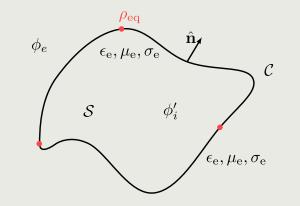
$$\oint_{\mathcal{C}} e^{-j\lambda\zeta} \left(\lambda\phi \,\mathrm{d}\zeta + \frac{\partial\phi}{\partial n} \,\mathrm{d}c \right) = 0 \qquad \qquad \zeta = x + jy$$

Inside *S*, the potential ϕ obeys the Laplace equation $abla^2 \phi = 0$

On ${\mathcal C}$, the potential ϕ is "known" and we are looking for $\partial_n \phi$

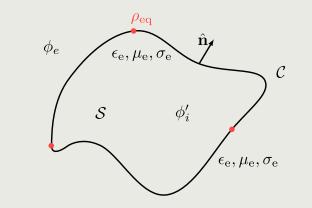
According to the Fokas method, this boundary value problem can be cast as a global relation

$$\oint_{\mathcal{C}} e^{-j\lambda\zeta} \left(\lambda\phi \,\mathrm{d}\zeta + \frac{\partial\phi}{\partial n} \,\mathrm{d}c \right) = 0 \qquad \qquad \zeta = x + jy$$
Dirichlet-to-Neumonn (DtN)



Inside *S*, the potential ϕ obeys the Laplace equation $abla^2 \phi = 0$

On ${\mathcal C}$, the potential ϕ is "known" and we are looking for $\partial_n \phi$



According to the Fokas method, this boundary value problem can be cast as a global relation

$$\oint_{\mathcal{C}} e^{-j\lambda\zeta} \left(\lambda\phi \,\mathrm{d}\zeta + \frac{\partial\phi}{\partial n} \,\mathrm{d}c \right) = 0 \qquad \qquad \zeta = x + jy$$
Dirichlet-to-Neumann (DtN)

Discretization of this relation by expanding ϕ and $\partial_n \phi$ into Legendre polynomials and selecting well-chosen spectral collocation points λ , leads to a discretized \mathcal{D}

The Dirichlet-to-Neumann operator

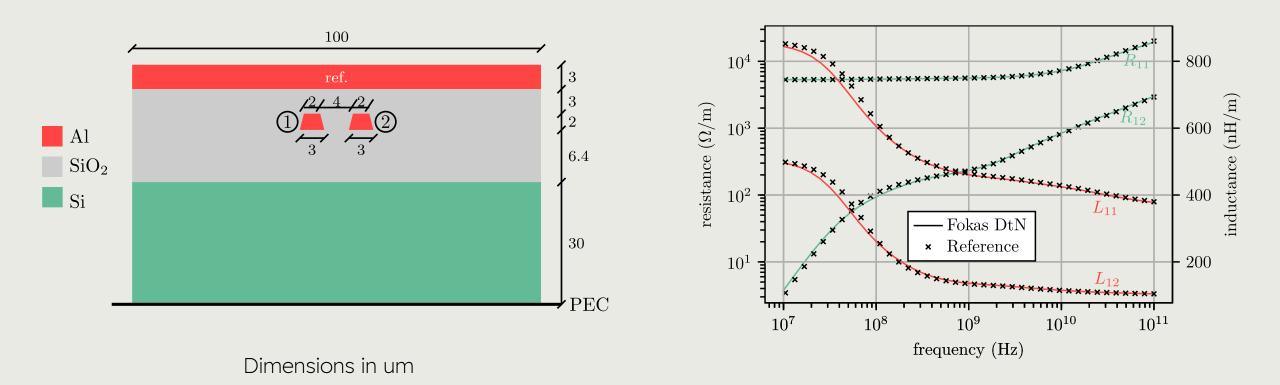
Fokas computation of the Laplace equation

Interconnect analysis

Metaconductor performance

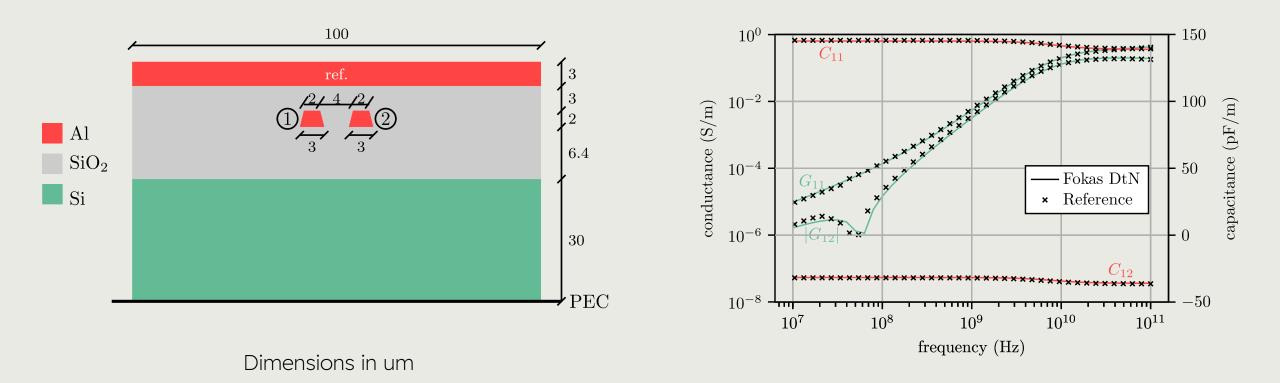
Future work

A pair of coupled embedded lines shows excellent agreement with the reference result



Reference: D. Vande Ginste et al.: URSI GASS 2011

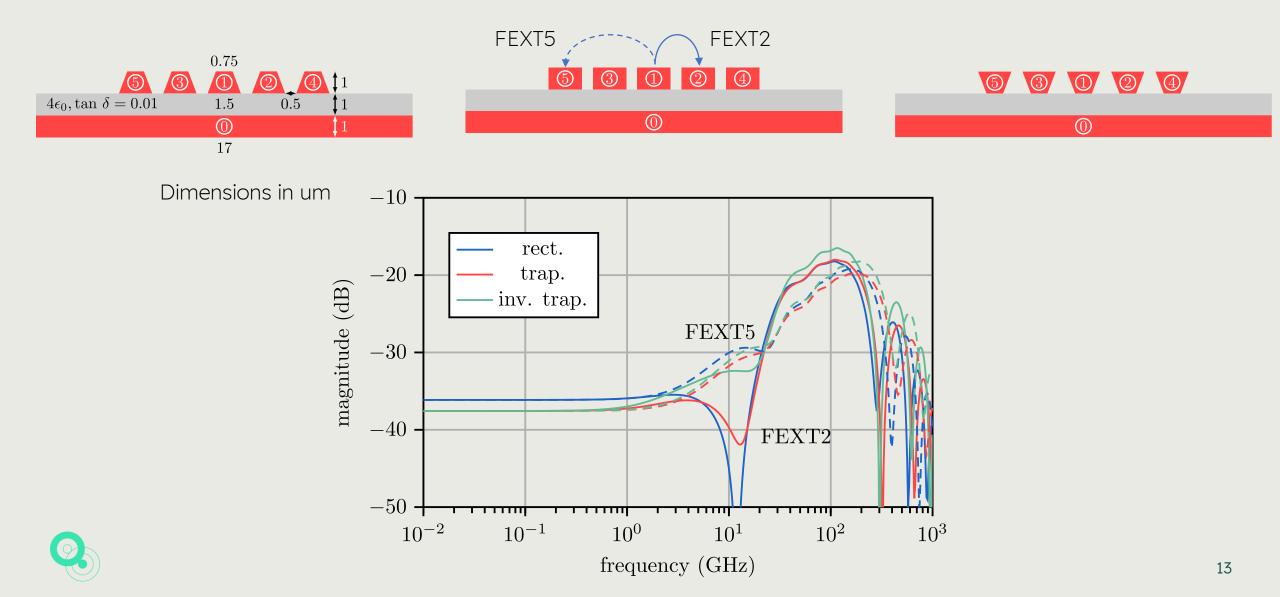
A pair of coupled embedded lines shows excellent agreement with the reference result



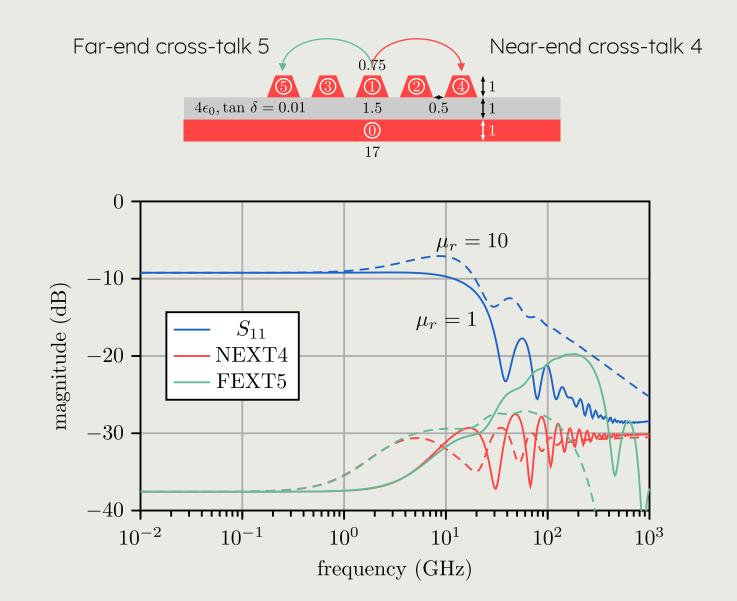
Reference: D. Vande Ginste et al.: URSI GASS 2011

12

Far-end cross-talk (FEXT) in multiconductor TL strongly depends on conductor's shape



Magnetic materials heavily impact the signal integrity performance



The Dirichlet-to-Neumann operator

Fokas computation of the Laplace equation

Interconnect analysis

Metaconductor performance

Future work

Alternating magnetic and non-magnetic layered conductors can reduce skin effect considerably

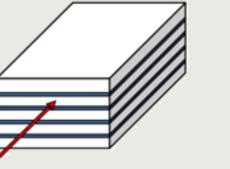
Materials such as cobalt exhibit a negative permeability in certain frequency ranges

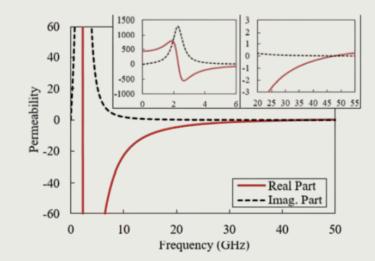
Alternating layers of non-magnetic conductors and magnetic material will exhibit an lower average $\mu_r < 1$ or even $\mu_r = 0$

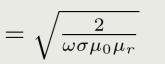
This reduces the skin effect and hence losses in interconnects.

 $\delta = \sqrt{\frac{2}{\omega \sigma \mu_0 \mu_r}}$

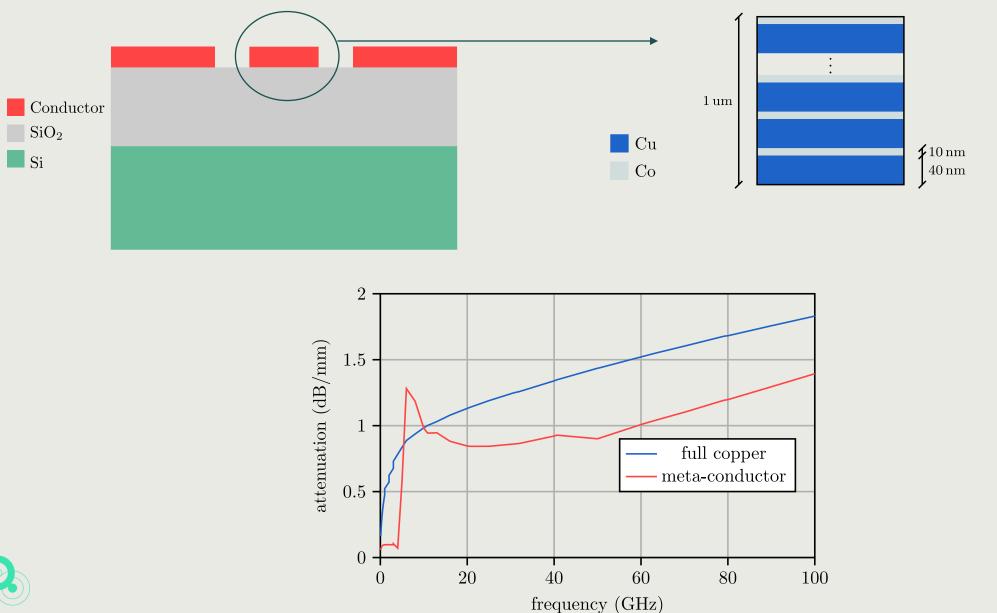
$$u_{r,\mathrm{av}} = \frac{1 \cdot t_{\mathrm{cu}} + \mu_{r,\mathrm{mag}} \cdot t_{\mathrm{mag}}}{t_{\mathrm{cu}} + t_{\mathrm{mag}}}$$







The reduced skin effect significantly lowers the attenuation over a large frequency range



The Dirichlet-to-Neumann operator

Fokas computation of the Laplace equation

Interconnect analysis

Metaconductor performance

Future work

Our work is never over

Non-convex polygonal cross-sections

Non-polygonal cross-sections

Acceleration of the matrix calculations

Extension of the Fokas method to 3-D

• • •

Quantum Mechanical & Electromagnetic Systems Modelling Lab

Technologiepark – Zwijnaarde 126, B-9052 Gent, Belgium Martijn.huynen@ugent.be www.QuestLab.be

Martijn HUYNEN, Post-doctoral researcher