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Interconnect scaling projected to keep doubling
to accommodate bandwidth demand

NEMO 2023

Source: TSMC, 
ISCC 2021

1010

102

106

2000 20402023

3-D interconnect 
density (mm-3)

Year

System integration 
technologies



3

New approaches and materials are required to 
meet this demand

NEMO 2023

3-D Integrated circuits (3DICs) exploit the vertical 
dimension

Interposers and chiplets enable dense heterogenous 
integration  

Application of more exotic materials, e.g., magnetic 
components, present opportunities and challenges

Chiplet
Interposer

Metaconductor
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Miniaturization & increased operating frequency ask for more accurate 
and complete modeling

(Un)wanted intricate geometric details become increasingly impactful

Full wave solvers indispensable to capture effects such as the skin effect 
or the proximity effect

Challenging materials such as semiconductors or magnetic materials 
often not accurately modeled over large frequency ranges in 
(commercial) solvers

Advances in computational methods are needed 
to enable design methodologies
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Full RLGC characterization of interconnects with arbitrary polygonal 
cross-sections

Broadband capturing of skin and proximity effects in conductors and 
magnetic materials

Applicable to emerging interconnect topologies

Assess signal integrity performance of novel solutions

At quest, we developed a new approach to 
tackle these challenges 
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The Dirichlet-to-Neumann operator

Fokas computation of the Laplace equation

Interconnect analysis

Metaconductor performance

Future work



7

The equivalence principle replaces materials by 
the background medium

RL parameters
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The capacitance matrix can be computed in the 
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Galerkin discretization

pulse basis functions
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The DtN-operator is calculated with the 
Fokas method or unified transform method

Inside   , the potential     obeys the Laplace equation
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Discretization of this relation by expanding     and          into Legendre polynomials and selecting 

well-chosen spectral collocation points    , leads to a discretized 
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A pair of coupled embedded lines shows 
excellent agreement with the reference result

Dimensions in um

Reference:
D. Vande Ginste et al.: 

URSI GASS 2011
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Far-end cross-talk (FEXT) in multiconductor TL 
strongly depends on conductor’s shape

FEXT5

Dimensions in um

FEXT2
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Magnetic materials heavily impact the signal 
integrity performance

Far-end cross-talk 5 Near-end cross-talk 4
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Materials such as cobalt exhibit a negative permeability in certain 
frequency ranges

Alternating layers of non-magnetic conductors and magnetic material 
will exhibit an lower average μr < 1 or even μr = 0

This reduces the skin effect and hence losses in interconnects
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Alternating magnetic and non-magnetic layered 
conductors can reduce skin effect considerably
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The reduced skin effect significantly lowers the 
attenuation over a large frequency range
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Our work is never over

NEMO 2023

Non-convex polygonal cross-sections

Non-polygonal cross-sections

Acceleration of the matrix calculations

Extension of the Fokas method to 3-D

…
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