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Device performance is lacking since 2006
with respect to Moore’s law.

Transistor density
[tr. per mm²]

Single-thread performance
[SPECint x1000]
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Novel research paths are being explored.
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Dirac materials have faster carrier transport
compared to conventional semiconductors.
Electron mobility in cm2/Vs

Dirac materials

Conventional
semiconductors
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Novel Dirac devices are gaining interest.

Graphene field-effect transistor [1]

  

    
        

              

         

        

      

Double-barrier Cd3As2 nanowire diode [2]

[1] J. R. Bayogan et al. 2020 Nanotechnology 31 205001

[2] F. Giubileo et al. 2017 Progress in Surface Science 92(3) 143-175
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• EM potentials are solved for

• Dirac equation is discretized
on collocated grid

• Lorenz gauge

Existing Maxwell-Dirac solvers are not suitable
for the simulation of practical applications.

Not integrable into existing EM frameworks

Fermion doubling problem

Not satisfied numerically
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• EM fields are included

• Staggered grid approach
to discretize Dirac spinor

• Lorenz gauge

In quest, we developed a novel scheme
that overcomes these problems.

Easy integration into existing EM code

Less fermion doubling

Exactly satisfied on the discrete level
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Discretization of the Maxwell-Dirac equations

Properties of the novel method

Conservation laws

Simulation of ZrTe5 waveguide

Future work
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The fully-coupled Maxwell-Dirac equations describe
the time evolution of a charged fermion.

Dirac spinor EM potentials
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The fully-coupled Maxwell-Dirac equations describe
the time evolution of a charged fermion.

Backward coupling
via quantum current density:

Dirac spinor EM potentials
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The fully-coupled Maxwell-Dirac equations describe
the time evolution of a charged fermion.

Backward coupling
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Dirac spinor EM potentials

EM fields
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The fully-coupled Maxwell-Dirac equations describe
the time evolution of a charged fermion.

Backward coupling
via quantum current density:

Dirac spinor EM potentials

EM fields

EM potentials

Lorenz gauge
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The fully-coupled Maxwell-Dirac equations describe
the time evolution of a charged fermion.

Forward coupling
via minimal coupling

Backward coupling
via quantum current density:

Dirac spinor EM potentials

EM fields

EM potentials

Lorenz gauge
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The stencil presented by R. Hammer is chosen
to discretize the Dirac spinor.

Discretization
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Yee’s method for Maxwell’s equations is
well-established and versatile.

DiscretizationEM fields ǁ𝑒 and ෠ℎ

EM potentials ෤𝑎 and 𝜙
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The final scheme is easily conceptualized with a flowchart.

Initialization

Interpolate 𝒂 and 𝜙

Interpolate 𝒂 and 𝜙

Interpolate Ψ
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Discretization of the Maxwell-Dirac equations

Properties of the novel method

Conservation laws

Simulation of ZrTe5 waveguide

Future work



18

The staggered grid alleviates the fermion doubling problem.

Collocated grid

4 Dirac cones 2 Dirac cones

Staggered grid
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The fully-coupled scheme is second-order accurate
in both space and time.
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• Less fermion doubling

• Second-order accurate in space and time

• Integrable with existing CEM methods

• Exactly satisfying the Lorenz gauge

• Explicit method

Our method neatly combines these schemes,
while maintaining their properties.
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Discretization of the Maxwell-Dirac equations

Properties of the novel method

Conservation laws

Simulation of ZrTe5 waveguide

Future work
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A Dirac particle is coupled to an EM cavity
to demonstrate conservation of probability and energy.
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The results show the excellent conservation properties.
All quantities are expressed in Hartree atomic units.

Energy

Total - 𝑚𝑐2

Dirac - 𝑚𝑐2

Electromagnetic

Source 𝑗𝑦 Norm - 1
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Discretization of the Maxwell-Dirac equations

Properties of the novel method

Conservation laws

Simulation of a ZrTe5 waveguide

Future work
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An EM plane wave impinging on a Dirac particle
in a ZrTe5 waveguide is simulated.
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The particle is quickly accelerated and
generates its own electric field.

Source 𝑒𝑧,src [𝜇V/nm] Particle’s average z-position [nm] Electric field @ sensor [𝜇V/nm]
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Discretization of the Maxwell-Dirac equations

Properties of the novel method

Conservation laws

Simulation of ZrTe5 waveguide

Future work
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• Dielectric materials

• (Ohmic) contacts

• More complex device structures

• Zeeman effect

• Chiral magnetic effect

• …

There is plenty of room for further progress.
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Discretization of the Maxwell-Dirac equations

Properties of the novel method

Conservation laws

Simulation of ZrTe5 waveguide

Future work
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