Solving the Fully Coupled Time-Dependent Maxwell-Dirac System: A Second-Order Accurate Numerical Scheme

Jul Van den Broeck Pieter Decleer Emile Vanderstraeten Dries Vande Ginste

Device performance is lacking since 2006 with respect to Moore's law.

Novel research paths are being explored.

Dirac materials have faster carrier transport compared to conventional semiconductors.

Electron mobility in cm^2/Vs

Novel Dirac devices are gaining interest.

Graphene field-effect transistor [1]

Double-barrier Cd₃As₂ nanowire diode [2]

[1] J. R. Bayogan *et al.* 2020 *Nanotechnology* 31 205001

[2] F. Giubileo *et al.* 2017 *Progress in Surface Science* 92(3) 143-175

Existing Maxwell-Dirac solvers are **not suitable** for the simulation of practical applications.

EM potentials are solved for
 Mot integrable into existing EM frameworks

• Dirac equation is discretized on collocated grid

Fermion doubling problem

Lorenz gauge
 Not satisfied numerically

In quest, we developed a novel scheme that overcomes these problems.

• EM fields are included

Easy integration into existing EM code

• Staggered grid approach to discretize Dirac spinor

Less fermion doubling

• Lorenz gauge

Properties of the novel method

Conservation laws

Simulation of ZrTe₅ waveguide

The fully-coupled Maxwell-Dirac equations describe the time evolution of a charged fermion.

Dirac spinor

$$i\hbar \frac{\partial \Psi}{\partial t} = \left[c \boldsymbol{\alpha} \cdot (\hat{\boldsymbol{p}} - q\boldsymbol{a}) + mc^2\beta + q\phi\right] \Psi$$

The fully-coupled Maxwell-Dirac equations describe the time evolution of a charged fermion.

Dirac spinor

$$i\hbar \frac{\partial \Psi}{\partial t} = \left[c \boldsymbol{\alpha} \cdot (\hat{\boldsymbol{p}} - q\boldsymbol{a}) + mc^2\beta + q\phi \right] \Psi$$

Backward coupling via quantum current density: $oldsymbol{j}_q = q \Psi^\dagger c oldsymbollpha \Psi$

The fully-coupled Maxwell-Dirac equations describe the time evolution of a charged fermion.

Dirac spinor

$$i\hbar \frac{\partial \Psi}{\partial t} = \left[c \boldsymbol{\alpha} \cdot (\hat{\boldsymbol{p}} - q\boldsymbol{a}) + mc^2\beta + q\phi \right] \Psi$$

Backward coupling via quantum current density: $m{j}_q = q \Psi^\dagger c m{lpha} \Psi$

$$egin{cases}
abla imes oldsymbol{e} &= \mu_0 rac{\partial oldsymbol{h}}{\partial t} \
abla imes oldsymbol{h} &= \epsilon_0 rac{\partial oldsymbol{e}}{\partial t} + oldsymbol{j}_{ ext{ex}} + oldsymbol{j}_q \
abla &= \kappa_0 rac{\partial oldsymbol{e}}{\partial t} + oldsymbol{j}_{ ext{ex}} + oldsymbol{j}_q \end{cases}$$

EM fields

The fully-coupled Maxwell-Dirac equations describe the time evolution of a charged fermion.

Backward coupling via quantum current density: $oldsymbol{j}_q = q \Psi^\dagger c oldsymbollpha \Psi$

The fully-coupled Maxwell-Dirac equations describe the time evolution of a charged fermion.

13

The stencil presented by R. Hammer is chosen to discretize the Dirac spinor.

Yee's method for Maxwell's equations is well-established and versatile.

EM fields \tilde{e} and \hat{h} EM potentials \tilde{a} and ϕ

The final scheme is easily conceptualized with a flowchart.

Properties of the novel method

Conservation laws

Simulation of ZrTe₅ waveguide

The staggered grid alleviates the fermion doubling problem.

The fully-coupled scheme is second-order accurate in both space and time.

Our method neatly combines these schemes, while maintaining their properties.

- Less fermion doubling
- Second-order accurate in space and time
- Integrable with existing CEM methods
- Exactly satisfying the Lorenz gauge
- Explicit method

Properties of the novel method

Conservation laws

Simulation of ZrTe₅ waveguide

A Dirac particle is coupled to an EM cavity to demonstrate conservation of probability and energy.

The results show the excellent conservation properties.

All quantities are expressed in Hartree atomic units.

Properties of the novel method

Conservation laws

Simulation of a ZrTe₅ waveguide

An EM plane wave impinging on a Dirac particle in a ZrTe₅ waveguide is simulated.

The particle is quickly accelerated and generates its own electric field.

Properties of the novel method

Conservation laws

Simulation of ZrTe₅ waveguide

There is plenty of room for further progress.

- Dielectric materials
- (Ohmic) contacts
- More complex device structures
- Zeeman effect

•

...

• Chiral magnetic effect

Properties of the novel method

Conservation laws

Simulation of ZrTe₅ waveguide

QUEST. Quantum Electrom Modelling

Quantum Mechanical & Electromagnetic Systems Modelling Lab

Technologiepark–Zwijnaarde 126, B-9052 Gent, Belgium T +32 9 331 48 81 — **jul.vandenbroeck@ugent.be** www.questlab.be

Jul Van den Broeck, PhD Researcher.