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Boundary integral equations (BIEs) are characterized by their use of the 
Green’s function and restriction of the unknowns to the boundary

This results in a smaller system matrix and automatic inclusion of the 
radiation condition 

but in a dense matrix with more difficult numerical calculation, especially 
for good conductors

Moreover, BIEs are known to suffer from low-frequency breakdown, 
dense-mesh breakdown, internal resonances etc.

As these properties often depend on the discretization strategy, inherent 
analysis of the BIE’s properties is difficult

Upsides and downsides

Boundary integral equations
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Central to all BIEs is the equivalence theorem,

which typically introduces two boundary sources

     and         to replace the material inside

leading to formulation such as the PMCHWT and Müller BIE

However, by giving up control over the fields inside,

a single-source suffices leading to formulations such as 

the Surface-Volume-Surface-EFIE (SVS-EFIE) & 

the Differential Surface Admittance-EFIE (DSA-EFIE)

Single-source formulations typically studied less in-depth

Equivalence theorem

Boundary integral equations
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One way to find an expression for     ,, is to introduce

the Poincaré-Steklov operator in both situations 

Imposing the boundary conditions, we then find an expression for

the surface current density as

The Differential Surface Admittance operator

Boundary integral equations
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DSA approach has been successfully applied to various problem such as

• 2-D transmission Line RLGC extraction [1]

• Arbitrary interconnect characterization [2]

• 3-D scattering & interconnects of canonical volumes [3]

• Development of magnetic interconnects [4]

However, rigorous proof of the DSA’s rigor, inherent properties & 
weaknesses, and the effects of magnetic contrast is still lacking

Goal: derive analytical solution for a sphere, compute closed-form 
eigenvalues and study effect breakdown on condition number

Applications of the DSA operator

Boundary integral equations

[1] Demeester, IEEE MTT 2008 [3] Huynen, IEEE MTT 2020
[2] Patel, IEEE MTT 2016  [4] Bosman, IEEE MTT 2023 4
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The surface current density     and tangential electric field      are 
decomposed into two sets of vector spherical harmonics

Boundary quantities

Spherical harmonics-based decomposition
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In the EFIE, the Green’s kernel can be expanded into           and           well

which, after Galerkin testing, leads to a one-to-one correspondence between
every          and         , and every         and 
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Electric Field Integral Equation (EFIE)

Spherical harmonics-based decomposition



The DSA operator can be constructed in various ways to find the electric 
surface current density       [5], [6]

The original formulation and its 3-D extension rely on the eigenmodes of a PEC 
cavity and avoid the Green’s function in the medium

For a sphere, the two groups of eigenmodes are of the form:
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Differential surface admittance operator (DSA)

Spherical harmonics-based decomposition

[5] Huynen, IEEE AWPL 2016  [6] Patel, IEEE AWPL 2017



With these spherical harmonics form of the eigenmodes, we discretize

which, after Galerkin testing, leads to a one-to-one correspondence between
every          and         , and every         and 
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Differential surface admittance operator (DSA)

Spherical harmonics-based decomposition



With both operators discretized and resulting in simple one-to-one relations,

the system is easily solved:

Since the solution is fully analytical, it should be rigorous compared to the exact 
solution

However, the DSA elements contain an infinite sum 

• Convergence rate?

• Effect different materials?

• Does it jeopardize the DSA’s exactness?
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Analytical solution

Spherical harmonics-based decomposition



The sums require the zeros of the Bessel functions,
which need to be computed numerically

The sums only converge at a rate s-1 , 
which is slow if machine precision is desirable

For high-contrast materials or good conductors
a very slow initial convergence is observed

Solution: closed-form expression based on generalized Fourier series
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Analytical solution

Closed-form DSA elements



Just like for the conventional Fourier series, the function f is projected on a set 
of orthogonal basis functions

By choosing the correct f, the Fourier sum becomes          and     

hence their closed form is found to be

Leading to fast, accurate evaluations for the final solution

11

Analytical solution

Closed-form DSA elements



Parameters set-up

• Radius sphere: 1 m

• Distance dipole from origin: 10 m

• Dipole moment: 1 A m

• Frequency: k0 = 4π /1m

• # terms in Mie series: 50

• # terms in DSA-EFIE: 50

• 3 different materials:
• Low-contrast dielectric
• High-contrast dielectric
• Lossy dielectric

> 12 significant digits compared to the Mie series

so the DSA-EFIE provides a rigorous solution
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Radial dipole

Numerical results
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Tangential dipole

Numerical results



Parameters set-up

• Radius sphere: 1 m

• Distance dipole from origin: 10 m

• Dipole moment: 1 A m

• Frequency: k0 = 4π /1m

• # terms in Mie series: 50

• # terms in DSA-EFIE: 50

• Copper (σ=5,8e7 S/m) from 10 kHz up to 1 GHz

• Observation point at 1 m above the surface for θ= π/4

> 15 significant digits compared to the Mie series

so the DSA-EFIE provides a rigorous solution for this difficult-to-handle
class of materials
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Radial dipole, good conductor

Numerical results



and                    are the eigenvalues of the DSA-EFIE system

For large n, one set of eigenvalues accumulates at zero,
while the other stays constant

 this leads to dense-mesh breakdown

Choice of Sobolev space does not solve the issue

Comparison:

• EFIE [7] : Sobolev H-1/2 (div) testing avoids dense-mesh breakdown

• MFIE [7] : L2 testing avoids dense-mesh breakdown

• SVS-EFIE-J [8]: Sobolev H-1/2 (div) testing avoids dense-mesh breakdown

• SVS-EFIE-M [9]: L2 testing avoids dense-mesh breakdown
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Dense-mesh breakdown

Spectral analysis

[7] Hsiao, IEEE TAP 1997  [8] Goni, IEEE TAP 2021  [9] Goni, IEEE JMMCT 2022



and                    are the eigenvalues of the DSA-EFIE system

For small f, one set of eigenvalues accumulates at zero,
while the other stays constant

 this leads to low-frequency breakdown

Inherent to the EFIE so Sobolev testing space does not solve this issue

Comparison:

• EFIE [7] : Inherent low-frequency breakdown

• MFIE [7] : Absence of low-frequency breakdown

• SVS-EFIE-J [8]: Inherent low-frequency breakdown

• SVS-EFIE-M [9]: Absence of low-frequency breakdown

16

Low-frequency breakdown

Spectral analysis

[7] Hsiao, IEEE TAP 1997  [8] Goni, IEEE TAP 2021  [9] Goni, IEEE JMMCT 2022



We presented an analytic solution to the Differential Surface Admittance 
operator combined with the EFIE for scattering at a sphere

Analytical solution is devoid of any remaining summation or numerical 
integration and provides >12 significant digits

Spectral analysis confirms dense-mesh breakdown and low-frequency 
breakdown 

Future work

Developed exact solution is an excellent analytical tool to develop new DSA-BIE 
formulations with preferable properties
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& future work

Conclusion
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