


Boundary integral equations

Upsides and downsides

Boundary integral equations (BIEs) are characterized by their use of the
Green’s function and restriction of the unknowns to the boundary

This results in a and automartic of the

but also in a dense maftrix with more difficult numerical calculation,
especially for good conductors

Moreover, BIEs are known to suffer from low-frequency breakdown,
dense-mesh breakdown, infernal resonances etc.

As these properties often depend on the discretization strategy, inherent
analysis of the BIE’s properties is difficult




Boundary integral equations

Equivalence theorem

Central to all BIEs is the equivalence theorem,
which typically intfroduces two boundary sources
Js and to replace the material inside

leading to formulation such as the PMCHWT and Mdller BIE

However, by giving up control over the fields inside,

a single-source suffices leading to formulations such as
the Surface-Volume-Surface-EFIE (SVS-EFIE) &

the Differential Surface Admittance-EFIE (DSA-EFIE)

Single-source formulations typically studied less in-depth

(€0, ho) (€0, ho)
R equivalence principle _
n
€0, 1O €0, 1O
(€0, ho) (eo, ho)
Js
Single-source
. equivalence principie )
n n
el ef
€0, 10 €0, MO



Boundary integral equations

Differential surface admittance operator

DSA approach has been successfully applied to various problem such as
o 2-D fransmission Line RLGC extraction [1]

« Arbitrary intferconnect characterization [2]

« 3-D scattering & interconnects of canonical volumes [3]

« Development of magnetic interconnects [4]

However, rigorous proof of the DSA’s rigor, inherent properties &
weaknesses, and the effects of magnetic contrast is still lacking

Goal: derive analytical solution for a sphere, compute closed-form
eigenvalues and study effect breakdown on condition number

[1] Demeester, IEEE MTT 2008 [3] Huynen, IEEE MTT 2020
[2] Patel, IEEE MTT 2016 [4] Bosman, IEEE MTT 2023
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Spherical harmonics-based decomposition (eo. ho)

Boundary quantities Js

The surface current density js and tangential electric field ef, are
decomposed into two sets of vector spherical harmonics n
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Spherical harmonics-based decomposition (eo. ho)
Electric Field Integral Equation (EFIE) js

In the EFIE, the Green’s kernel can be expanded into and well
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Spherical harmonics-based decomposition (eo. ho)

Differential surface admittance operator (DSA) Js

The DSA operator can be constructed in various ways to find the electric
surface current density js [5], [6] fn

The original formulation and its 3-D extension rely on the of a PEC e

cavity and avoid the Green’s function in the medium

For a sphere, the two groups of eigenmodes are of the form:

h'rTL'rI\r/LIs X jn (knsT) . hg‘r%s X jn(KknsT)

[5] Huynen, IEEE AWPL 2016 [6] Patel, IEEE AWPL 2017



Spherical harmonics-based decomposition (eo. ho)

Differential surface admittance operator (DSA) Js

With these spherical harmonics form of the eigenmodes, we discretize
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Spherical harmonics-based decomposition

Analytical solution

With both operators discretized and resulting in simple one-to-one relations,

the system is easily solved:

B = fnm/(1 = ZPYP)  all) = Vi vm /1 = 28D YD)
fon = Yum /(L= ZR2032) il = Vi v /(L = 232 032

Since the solution is fully analytical, it should be rigorous compared to the exact
solution

However, the DSA elements contain an infinite sum
« Convergence rafe?
o Effect different materials?

« Does it jeopardize the DSA’s exactness?
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Closed-form DSA elements

Analytical solution

The sums require the zeros of the Bessel functions,
which need to be computed numerically

The sums only converge at arafe st
which is slow if machine precision is desirable

For high-contrast materials or good conductors
a very slow initial convergence is observed

Solution: closed-form expression based on generalized Fourier series
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Closed-form DSA elements y
Analytical solution Single-source

A equivalence principle 4
Just like for the conventional Fourier series, the function f is projected on a set €0, Ho €0, Ho

of orthogonal basis functions
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By choosing the correct f, the Fourier sum becomes v and Y&

hence their closed form is found to be
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Leading to fast, accurate evaluations for the final solution
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Numerical results
Radial dipole

Parameters set-up

* Radius sphere: 1 m

» Distance dipole from origin: 10 m
* Dipole moment: 1 Am

« Frequency: ky = 411 /Im

* # ferms in Mie series: 50

« # terms in DSA-EFIE: 50

« 3 different materials:
* Low-contrast dielectric
» High-contrast dielectric
* Lossy dielectric

> 12 significant digits compared to the Mie series

so the DSA-EFIE provides a rigorous solution
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Numerical results
Tangential dipole

Parameters set-up

* Radius sphere: 1 m

» Distance dipole from origin: 10 m
* Dipole moment: 1 Am

« Frequency: ky = 411 /Im

* # ferms in Mie series: 50

« # terms in DSA-EFIE: 50

« 3 different materials:
* Low-contrast dielectric
» High-contrast dielectric
* Lossy dielectric

> 12 significant digits compared to the Mie series

so the DSA-EFIE provides a rigorous solution
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t dipole

Numerical results
Radial dipole, good conductor

Parameters set-up

* Radius sphere: 1 m (ol o0l (V)

» Distance dipole from origin: 10 m - N

« Dipole moment: 1 Am \::2::: T N series

« Frequency: ky = 411 /Im : ’

. # terms in Mie series: 50 \:t:::: 7 f’v

+  # terms in DSA-EFIE: 50 e

« Copper (0=5,8e7 S/m) from 10 kHz up to 1 GHz . Frequency (Hz) .

« Observation point at 1 m above the surface for 6= 11/4

Relative error
.1 0 29
3500 A/\/
> 15 significant digits compared to the Mie series

so the DSA-EFIE provides a rigorous solution for this difficult-to-handle
class of materials
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Spectral analysis

Dense-mesh breakdown

2P Y and 22 (2) qgre the eigenvalues of the DSA-EFIE system

Absolute value
1 - 102

For large n, one set of eigenvalues accumulates at zero,
while the other stays constant

This leads to dense-mesh breakdown

Choice of Sobolev space does not solve the issue 0 — A -

DTS <

1 19
Comparison: Order n

« EFIE [7]: Sobolev H1/? (div) festing avoids dense-mesh breakdown

« MFIE [7] : L? festing avoids dense-mesh breakdown

« SVS-EFIE-J [8]: Sobolev H1/2 (div) testing avoids dense-mesh breakdown
« SVS-EFIE-M [9]: L? testing avoids dense-mesh breakdown

[7] Hsico, IEEE TAP 1997 [8] Goni, IEEE TAP 2021 [9] Goni, IEEE JMMCT 2022
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Spectral analysis

Low-frequency breakdown

2P Y and 22 (2) qgre the eigenvalues of the DSA-EFIE system

Absolute value
3.9 102
. Zy7 — f“l\”*\/"'n"‘
For small f, one set of eigenvalues accumulates at zero, e h
while the other stays constant e h
o< -
this leads to low-frequency breakdown S
Inherent to the EFIE so Sobolev testing space does not solve this issue Wt e
HI)‘ ][;J”
Frequency (Hz)

Comparison:

« EFIE [7]: Inherent low-frequency breakdown

« MFIE [7] : Absence of low-frequency breakdown

« SVS-EFIE-J [8]: Inherent low-frequency breakdown

« SVS-EFIE-M [9]: Absence of low-frequency breakdown

[7] Hsico, IEEE TAP 1997 [8] Goni, IEEE TAP 2021 [9] Goni, IEEE JMMCT 2022 16



Conclusion
& future work

We presented an analytic solution to the Differential Surface Admittance
operator combined with the EFIE for scattering at a sphere

Analyftical solution is devoid of any remaining summation or numerical
integration and provides >12 significant digits

Spectral analysis confirms dense-mesh breakdown and low-frequency
breakdown

Developed exact solution is an excellent analytical tool to develop new DSA-BIE
formulations with preferable properties
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