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* The differential surface admittance operator
* Spherical harmonics

* Generalized Fourier series
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2 IMS gingle-source boundary integral equation

* When applying the equivalence theorem,
one can introduce 1 or 2 surface current densities

* Single source approaches sacrifice control over
fields in the replaced medium for simplicity

* However, properties of such approaches are less researched

(eo, ho) . (eo, hp)

Equivalence theorem
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@IMS Differential surface admittance operator 1/

* One approach is the differential surface admittance operator (DSA)
— Has been successfully applied to

« 2-D transmission line RLGC extraction [1]
* Arbitrary interconnect characterization [2]
» 3-D scattering & interconnects of canonical volumes [3]

* Development of magnetic interconnects [4]

— However, rigorous proof of the DSA’s exactness, its inherent properties &
weaknesses, and the effects of magnetic contrast is still lacking

[1] Demeester, IEEE MTT 2008 [3] Huynen, IEEE MTT 2020
[2] Patel, IEEE MTT 2016 [4] Bosman, IEEE MTT 2023
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@ IMS Differential surface admittance operator 1/

* Various techniques exist to construct the electric surface
current density j- (see e.g. [1,2])

* The differential surface admittance (DSA) operator uses the

eigenmodes of the volume to find js without relying on the
Green’s function:

js(r) =Yoe, = —7721/: %g(ﬁ x h* (1)) - el (r')dr’| (A x h,(r))

NN

[1] Huynen, IEEE AWPL 2016 Magnetic eigenmodes
[2] Patel, IEEE AWPL 2017




@ IMS Differential surface admittance operator 1/

« Combined with the electric field integral equation (EFIE)
nxel(r) =nxepe(r) + 7 oj. = nxejpe — jwpoen X [ Go(|r — r'|)js(r') dr’
the complete system can be solved °
 But what about the properties of the DSA operator:
low-/high-frequency breakdown, functional space mapping?

* Let us turn to the sphere to get a fully analytical solution for all
operators involved
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®IMS  Decomposition into spherical harmonics
* We start by expanding the unknowns j. and e}, on the boundary:

S 3 aMa® L a@u@ o S SS g0 ge) @)

n=0m=—n n=0m=—n

* The basis functions are two orthogonal sets of vector spherical

harmonics. E.g.:
Y

(n,m)=(1,0) Unpm X (n,m)=(2,-1)

(1)

Unm 0.¢
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oIMS Symmetry radial electric dipole

* If we consider a sphere excited by a dipole oriented along the z-
axis, the results will be independent of ¢ (thus m=0)

o 2%

* Moreover, onIy the first set of basis functions is required

z QLU o, e = z " Gy + Brat

—n

4 dipole
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o0 IMS EFIE and excitation

* The Green’s dyadic & the dipole’s radiation pattern can be
expanded in vector spherical harmonics as well [1].

o0 *

[1] Hsiao et al. [EEE TAP 1997
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o0 IMS EFIE and excitation

* Since these basis functions are orthogonal, testing with ubh:
and integrating analytically, isolates a single ., 5" pair [1]

nxe)(r) =mnxepc —jw,uoﬁxfﬁo(]r —1'|)js(r") dr’

N N 1 1
T = = X oo
n—
— <+

W oz o0

/
Z & [koah&?)(koa) koajn (koa)]
[1] Hsiao et al. IEEE TAP 1997
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oIMS Eigenmodes spherical cavity

* The magnetic eigenmodes of a spherical PEC cavity h , are of
the same form as the vector spherical harmonics u'") & u!2):

h’nms X Tjn(knsr)ufl(’bv'?z & hy,ms X T]n(knsr)ugzl%

et 2

* The same orthogonality applies so...

AMTT-S
|EEE MICROWAVE THEORY &
7 TECHNOLOGY SOCIETY



o0 IMS Differential surface admittance

. ... testing with u'l) , isolates a single ., 3" pair:

1 (x) = —772,/: |:.f—/—z2“£ (B x h(r')) - el (r')dr’| (A x h,(r))

N .
N
. e . A1) (1
Jjs = Zoa-&.“u;J — EE = Z O ugzo?
n=—=
— |

n=I(

ol = P
with

o0 2/{%8 (k2 — k%)
In Z_: 2 2 ( 1.2 2 n(n+1)
s=1 (kns — k )(kns o kO) |:1 o ]
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Connecting Minds. Exchanging Ideas. S u I I l I I la ry

* By expanding the unknown boundary quantities in spherical
harmonics:

N N
. 1 1 1 1
Js = E : (-")‘f"g!- )ufgz[]) e(i) - Z B’El )ufE’e,O)

* and fully making use of the spherical harmonics expansions of
the EFIE and DSA operator, we have found analytical solutions
forall o’ and 3" coefficients

S =+ Zpay” o) = VaBl
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o IMS Sum over the Bessel zeroes

 The factor ),, contains an infinite
sum that needs to be evaluated

* Evaluation requires x,,s, which
need to be computed numerically @

* A lot of terms are required to
approach the asymptote &

Value

179.3 +

—99.9 |

 Closed form exists?

109 101 102 103 104

Number of terms s
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o0 IMS Generalized Fourier series

* Yes, using a generalized

S , -n kns .
Fourier series © f(r) = Z Cs Jn(KnsT) = ; Tr;nj(k(nsr)Tl)gjn(k”Sr)’
: : : .. (ka)® .
* This function f results in a similar sum  f(r) = Fai. (kT n(kr),

» Closed form contains just a S 2ky (K — kg)
few function evaluations @ L (K2, — k2) (K2, — k3) [1 - ”(”H)]

V. o (ka)?jn(ka)  (koa)?jn(koa)
" kagn(ka)] [koagn(koa)]
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SLIMS Closed form: convergence

 Relative error of the series

Relative error

compared to the closed sum 100 1
forn=1& 4 .
* Sum converges very slowly @
» Analytical expression provides
tremendous speed-up & 0"
accuracy improvement of the —
complete solution @ 100 107 10? 103 10

Number of terms s
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MIMS Final field coefficients

 With the )., sum issue solved, the coefficients for
the electric field 3. are fully defined:

* With the unknown coefficients fully computed,
we can reconstruct the total fields
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NIMS Numerical analysis
* Sphere with radius 1 m o] [V/m

* Dipole at 10 m on z-axis

* Tangential electric field for
k=41m/1m

 #terms in series =50

10t + —— DSA-EFIE ---- Mie series

109 +

1070 ¢

* Excellent agreement with
Mie series for lossy,
low- and high- contrast dielectric

0 30 60 90 120 150 180
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NIMS Numerical analysis

* Sphere with radius 1 m o g adReative error
* Dipole at 10 m on z-axis B
* Tangential electric field for | >\
k=4m/1m :
* # terms in series = 50
10— 14
* Match of at least 12 sl e =105 e = 10
significant digits © e e W
0 [°]
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2IMS  Symmetry tangential electric dipole

* If we consider a sphere excited by a dipole oriented along the x-
axis, the results have a sin/cos(¢p) (thus m=-1/1) dependency

e 2 ¥

* Now, the two sets of basis functions are required

¥ dipole

n=0m=—n n=0m=—n
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NIMS Numerical analysis
* Sphere with radius 1 m leo| [V/m

* Dipole at 10 m on x-axis T
* Tangential electric field (0) for

k=41m/1m 0 }\\

 #terms in series =50

10° +

* Excellent agreement with
Mie series for lossy,
low- and high- contrast dielectric
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NIMS Numerical analysis

* Sphere with radius 1 m e [V/m]
* Dipole at 10 m on x-axis 10% 1 —— DSA-EFIE =--- Mie series
* Tangential electric field () for |

k=41/1m 10" 4
* # terms in series = 50 "

109

* Match of at least 12 ]

significant digits © 1

0 [°]
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o0 IMS Dense mesh breakdown

 Complete DSA-EFIE system has two sets of eigenmodes

* For large n, the red set suffers
from dense mesh breakdown; "
the green set does not
(different asymptotes) 107

e Correct choice of Sobolev
testing space can solve this
issue o2 1

10-1

10! 102
Order n

AMTT-S
|EEE MICROWAVE THEORY &
7 TECHNOLOGY SOCIETY



SLIMS Low-frequency breakdown

 Complete DSA-EFIE system has two sets of eigenmodes

* For small f, the two sets diverge
which leads to low-frequency Alslue value B
breakdown -1 |

 Caused by EFIE and canthus .-
be solved with preconditioner
or augmented EFIE

10~7

10— 10 L

104 10° 106 107 108 109
Frequency f
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o0 IMS Conclusion & Future work

* We presented an analytical solution of the DSA-EFIE
including a closed sum for the infinite series

* Improved convergence leads to a 12-digit precision
* |nvestigated the total system’s spectrum

Future work
* Determine impact test function space
* Extension to magnetic DSA operator
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