Exact Spectral Analysis of Traditional and Single-Source Integral Equations for a Penetrable Sphere

Behaviour of the numerical discretization schemes of the integral equations (IEs) such as the Method of Moments, the Locally Corrected Nystrom method and others largely depends on the spectral properties of the continuous integro-differential operators forming such equations. This includes susceptibility of these numerical schemes to various breakdowns including low-frequency breakdown, oversampling breakdown, spurious resonances, […]

Analytic Differential Admittance Operator Solution of a Dielectric Sphere under Radial Dipole Illumination

In this contribution, the exact solution of the electric field integral equation (EFIE) combined with the differential surface admittance (DSA) operator is presented for scattering at a homogeneous dielectric sphere. By employing a Galerkin Method of Moments with two complete sets of orthogonal vector spherical harmonics as basis functions, both operators involved are constructed with […]

Modeling of Tunable Electronic Waveguide Devices in Graphene using Conservative Higher-Order Time Stepping

An accurate technique leveraging conservative higher-order time stepping is proposed to analyze electrostatically induced waveguides in graphene. These highly tunable one-dimensional (1D) electronic channels are a promising interconnect alternative for graphene nanoribbons (GNRs) and carbon nanotubes (CNTs) to be used in future integrated circuits (ICs). A detailed discussion of the eigenmodes of these waveguides is […]