Our
Publications
As any academic research lab, we publish our work in high-impact journals and as conference contributions. This way, we aim to disseminate research and findings to a broad audience, trigger interaction and collaboration, and advance science and technology.
A complete overview of all our publications can be found via the database of Ghent University. Our most recent work is presented below.
Recent publications
Construction of the differential surface admittance operator with an extended Fokas method for electromagnetic scattering at polygonal objects with arbitrary material parameters
This article presents a novel method to accurately simulate electromagnetic scattering at homogeneous polygonal cylinders with arbitrary material properties. A single source equivalence approach is invoked, allowing to substitute the background medium for the inner material of the scatterer, provided
Interconnect Modeling using a Surface Admittance Operator Derived with the Fokas Method
In this contribution, we propose a novel approach to rigorously model interconnect structures with an arbitrary convex polygonal cross-section and general, piecewise homogeneous, material parameters. A full-wave boundary integral equation formulation is combined with a differential surface admittance approach, invoking
A Hybrid EM/QM Framework Based on the ADHIE-FDTD Method for the Modeling of Nanowires
A new modeling formalism to compute the time-dependent behavior of combined electromagnetic (EM) and quantum mechanical (QM) systems is proposed. The method is geared towards highly multiscale geometries, which is vital for the future design of nanoelectronic devices. The advocated
A Robust Bayesian Optimization Framework for Microwave Circuit Design Under Uncertainty
In modern electronics, there are many inevitable uncertainties and variations of design parameters that have a profound effect on the performance of a device. These are, among others, induced by manufacturing tolerances, assembling inaccuracies, material diversities, machining errors, etc. This
An efficient algorithm to determine the operational range of near-field on-body UHF RFID systems
A new algorithm is proposed, leveraging a 3D multipole expansions of the electromagnetic fields, to accurately determine the operational range of a radiative near-field on-body radio-frequency identification (RFID) system based on its far field radiation patterns, simulated or measured, under
Accurate Characterization of Radiation from Interconnects on Interposer at mmWave Frequencies
An electromagnetic interference (EMI) assessment of mmWave interposers becomes increasingly important as the need for heterogeneous systems increases. However, the small size and complexity of these platforms make it more difficult to accurately measure them and, thus, a dedicated set-up