In this paper, the exact differential surface admittance (DSA) operator for scattering analysis of a homogeneous dielectric sphere is constructed. By utilizing two sets of orthogonal vector spherical harmonics as the basis functions for a Galerkin Method of Moments, the operator in question is obtained analytically. In comparison with the Mie series solution for a tangential electric dipole as source, a combination of the electric field integral equation and the DSA is shown to produce the same result within 12 digits of accuracy, laying the foundations for a subsequent analysis into the operator’s fundamental properties.
Modeling of ac quantum transport through imperfect carbon nanotube interconnects by means of nonequilibrium Green’s functions
Because of their long mean free path and superior current-carrying capabilities, carbon nanotubes (CNTs) are considered as an alternative for Cu in future interconnects. To