In this paper, the exact differential surface admittance (DSA) operator for scattering analysis of a homogeneous dielectric sphere is constructed. By utilizing two sets of orthogonal vector spherical harmonics as the basis functions for a Galerkin Method of Moments, the operator in question is obtained analytically. In comparison with the Mie series solution for a tangential electric dipole as source, a combination of the electric field integral equation and the DSA is shown to produce the same result within 12 digits of accuracy, laying the foundations for a subsequent analysis into the operator’s fundamental properties.
A semi‑classical Floquet‑NEGF approach to model photon‑assisted tunneling in quantum well devices
The non-equilibrium Green’s function formalism is often employed to model photon-assisted tunneling processes in opto-electronic quantum well devices. For this purpose, self-consistent schemes based on