Our
Publications
As any academic research lab, we publish our work in high-impact journals and as conference contributions. This way, we aim to disseminate research and findings to a broad audience, trigger interaction and collaboration, and advance science and technology.
A complete overview of all our publications can be found via the database of Ghent University. Our most recent work is presented below.
Recent publications
Conservative fourth-order accurate finite-difference scheme to solve the (3+1)D tilted Dirac equation in strained Dirac semimetals
Owing to their increased electron mobility compared to conventional semiconductors, three-dimensional (3D) Dirac semimetals are considered to be promising candidates for integration into next-generation electronic devices. In these materials, the low-energy dynamics of the charge carriers are governed by an
Broadband Impedance Response Extraction of On-Chip Interdigital Capacitors using a 3-D DSA Operator for Piecewise Homogeneous Structures
In this contribution, an enhanced 3-D differential surface admittance operator is proposed, facilitating accurate modeling of piecewise homogeneous cuboidal objects. By exploiting the analytical properties of entire-domain basis functions, material interfaces are effectively eliminated from the formulation, leading to a
Broadband Electromagnetic Modeling of On-Chip Passives Using a Differential Surface Admittance Operator for 3-D Piecewise Homogeneous Structures
Accurate modeling of on-chip passive components is vital for reliable integrated circuit (IC) design. However, this is non-trivial due to the inherent heterogeneity of the structures and the wide range of material parameters involved. In this work, we present a
Spectral Bayesian Optimization Using a Physics-Informed Rational Szegö Kernel for Microwave Design
Microwave device design increasingly relies on surrogate modeling to accelerate optimization and reduce costly electromagnetic (EM) simulations. This paper presents a spectral Bayesian optimization (SBO) framework leveraging a physicsinformed Gaussian process (GP) with a rational complex-valued Szegö kernel and input
Modeling of ac quantum transport through imperfect carbon nanotube interconnects by means of nonequilibrium Green’s functions
Because of their long mean free path and superior current-carrying capabilities, carbon nanotubes (CNTs) are considered as an alternative for Cu in future interconnects. To simulate their dynamical properties, a linear equivalent-circuit model is usually invoked containing, among other things,
A semi‑classical Floquet‑NEGF approach to model photon‑assisted tunneling in quantum well devices
The non-equilibrium Green’s function formalism is often employed to model photon-assisted tunneling processes in opto-electronic quantum well devices. For this purpose, self-consistent schemes based on a quantum electrodynamical description of light–matter interactions have been proposed before. However, these schemes are