In this contribution, we present a new approach to fully characterize interconnects composed out of arbitrary polygonal cross-sections and containing piecewise homogeneous material parameters. The complex per-unit-of-length inductance and capacitance matrices are obtained through the application of pertinent Dirichlet-to-Neumann operators, which are computed by means of an extended Fokas method, that are integrated in a boundary integral equation approach. As the complete RLGC-data of the structures under study is computed, we are able to assess relevant properties such as signal attenuation and cross-talk while the support for polygonal shapes allows for the inclusion of manufacturing effects such as etching.
Modeling of ac quantum transport through imperfect carbon nanotube interconnects by means of nonequilibrium Green’s functions
Because of their long mean free path and superior current-carrying capabilities, carbon nanotubes (CNTs) are considered as an alternative for Cu in future interconnects. To