A new algorithm is proposed, leveraging a 3D multipole expansions of the electromagnetic fields, to accurately determine the operational range of a radiative near-field on-body radio-frequency identification (RFID) system based on its far field radiation patterns, simulated or measured, under realistic deployment conditions. We illustrate the advocated method by an interrogating 866 MHz standard gain horn (SGH) and a passive eighth-mode substrate integrated waveguide (SIW) textile antenna deployed on an arm. The resulting algorithm is order 107 times faster than full-wave software, largely outperforms the range calculation via the traditional far field link method and it is capable of very accurately predicting the exchanged power.
Broadband Electromagnetic Modeling of On-Chip Passives Using a Differential Surface Admittance Operator for 3-D Piecewise Homogeneous Structures
Accurate modeling of on-chip passive components is vital for reliable integrated circuit (IC) design. However, this is non-trivial due to the inherent heterogeneity of the