In this contribution, the exact solution of the electric field integral equation (EFIE) combined with the differential surface admittance (DSA) operator is presented for scattering at a homogeneous dielectric sphere. By employing a Galerkin Method of Moments with two complete sets of orthogonal vector spherical harmonics as basis functions, both operators involved are constructed with closed expressions. By comparing to the classic Mie series solution for illumination by a radial electric dipole, the DSA-EFIE approach is confirmed to yield the exact solution within 12 digits of accuracy.
Conservative fourth-order accurate finite-difference scheme to solve the (3+1)D tilted Dirac equation in strained Dirac semimetals
Owing to their increased electron mobility compared to conventional semiconductors, three-dimensional (3D) Dirac semimetals are considered to be promising candidates for integration into next-generation electronic