Modeling of ac quantum transport through imperfect carbon nanotube interconnects by means of nonequilibrium Green’s functions

Because of their long mean free path and superior current-carrying capabilities, carbon nanotubes (CNTs) are considered as an alternative for Cu in future interconnects. To simulate their dynamical properties, a linear equivalent-circuit model is usually invoked containing, among other things, a kinetic inductance and a quantum capacitance. As this equivalent circuit has been derived for […]

A semi‑classical Floquet‑NEGF approach to model photon‑assisted tunneling in quantum well devices

The non-equilibrium Green’s function formalism is often employed to model photon-assisted tunneling processes in opto-electronic quantum well devices. For this purpose, self-consistent schemes based on a quantum electrodynamical description of light–matter interactions have been proposed before. However, these schemes are typically computationally very demanding. Therefore, in this work, a novel semi-classical method based on Floquet–Green […]

Exact Spectral Analysis of Traditional and Single-Source Integral Equations for a Penetrable Sphere

Behaviour of the numerical discretization schemes of the integral equations (IEs) such as the Method of Moments, the Locally Corrected Nystrom method and others largely depends on the spectral properties of the continuous integro-differential operators forming such equations. This includes susceptibility of these numerical schemes to various breakdowns including low-frequency breakdown, oversampling breakdown, spurious resonances, […]

Analytic Differential Admittance Operator Solution of a Dielectric Sphere under Radial Dipole Illumination

In this contribution, the exact solution of the electric field integral equation (EFIE) combined with the differential surface admittance (DSA) operator is presented for scattering at a homogeneous dielectric sphere. By employing a Galerkin Method of Moments with two complete sets of orthogonal vector spherical harmonics as basis functions, both operators involved are constructed with […]

Modeling of Tunable Electronic Waveguide Devices in Graphene using Conservative Higher-Order Time Stepping

An accurate technique leveraging conservative higher-order time stepping is proposed to analyze electrostatically induced waveguides in graphene. These highly tunable one-dimensional (1D) electronic channels are a promising interconnect alternative for graphene nanoribbons (GNRs) and carbon nanotubes (CNTs) to be used in future integrated circuits (ICs). A detailed discussion of the eigenmodes of these waveguides is […]

Valley filtering in 8-Pmmn borophene based on an electrostatic waveguide constriction

Materials with tilted Dirac cones, such as 8-Pmmn borophene, are being explored for valleytronic applications as the tilting direction is different for nonequivalent valleys. In this paper, a valley-filtering device based on electrostatic waveguides is proposed. First, these waveguides are examined from a theoretical point of view. An inner product is defined starting from the […]

Differential Interconnects with Integrated Equalization and Common-Mode Filtering for Broadband Signal Integrity Enhancement in High-Speed PAM-4 Signaling

In high-speed differential interconnects on printed circuit boards, signal integrity (SI) issues arise when neglecting the inherent low-pass characteristic and ubiquitous presence of common-mode noise. This work proposes a novel open-circuited stub equalizer with integrated common-mode filter in order to compensate for the low-pass characteristic while simultaneously suppressing the transmission of unwanted common-mode noise to […]

Power-efficient Near-field Focusing for Upcoming 6G MIMO Networks

An accurate and efficient near-field intensity shaping method is proposed, capable of reproducing sharp patterns while simplifying the design requirements of the array’s feeding network. The shaping problem is tackled by an efficient far-to-near-field transform, based on a spherical Fourier transform and multipole expansion of active radiation patterns, including mutual coupling effects. By limiting field […]

Analysis of Electrostatically Induced Interconnect Structures in Single-Layer Graphene via a Conservative First-Principles Modeling Technique

Electrostatically induced interconnect structures in graphene are an alluring alternative for nanoribbons to be used in future integrated circuits (ICs) because of the avoidance of edge scattering. In this contribution, these structures are analyzed using a novel first-principles modeling approach, based on higher-order conservative partitioned Runge-Kutta time stepping for the (2+1)D Dirac equation. The validity […]