Valley filtering in 8-Pmmn borophene based on an electrostatic waveguide constriction

Materials with tilted Dirac cones, such as 8-Pmmn borophene, are being explored for valleytronic applications as the tilting direction is different for nonequivalent valleys. In this paper, a valley-filtering device based on electrostatic waveguides is proposed. First, these waveguides are examined from a theoretical point of view. An inner product is defined starting from the […]

Differential Interconnects with Integrated Equalization and Common-Mode Filtering for Broadband Signal Integrity Enhancement in High-Speed PAM-4 Signaling

In high-speed differential interconnects on printed circuit boards, signal integrity (SI) issues arise when neglecting the inherent low-pass characteristic and ubiquitous presence of common-mode noise. This work proposes a novel open-circuited stub equalizer with integrated common-mode filter in order to compensate for the low-pass characteristic while simultaneously suppressing the transmission of unwanted common-mode noise to […]

Power-efficient Near-field Focusing for Upcoming 6G MIMO Networks

An accurate and efficient near-field intensity shaping method is proposed, capable of reproducing sharp patterns while simplifying the design requirements of the array’s feeding network. The shaping problem is tackled by an efficient far-to-near-field transform, based on a spherical Fourier transform and multipole expansion of active radiation patterns, including mutual coupling effects. By limiting field […]

Analysis of Electrostatically Induced Interconnect Structures in Single-Layer Graphene via a Conservative First-Principles Modeling Technique

Electrostatically induced interconnect structures in graphene are an alluring alternative for nanoribbons to be used in future integrated circuits (ICs) because of the avoidance of edge scattering. In this contribution, these structures are analyzed using a novel first-principles modeling approach, based on higher-order conservative partitioned Runge-Kutta time stepping for the (2+1)D Dirac equation. The validity […]

Fokas Based Dirichlet-to-Neumann Operators for Accurate Signal Integrity Assessment of Interconnects

In this contribution, we present a new approach to fully characterize interconnects composed out of arbitrary polygonal cross-sections and containing piecewise homogeneous material parameters. The complex per-unit-of-length inductance and capacitance matrices are obtained through the application of pertinent Dirichlet-to-Neumann operators, which are computed by means of an extended Fokas method, that are integrated in a […]

An ADHIE-TDDFT Method for the EM/QM Co-simulation of Coupled 1-D Nanowires

Over the past years, the rapid increase in device functionality and miniaturization has stimulated the demand for novel topologies and materials. One such trend is the emergence of one-dimensional nanostructures in electronic components. Given the embryonic stage of these applications, adequate modeling tools should be developed to investigate the structures’ intricate dynamics. This encompasses the […]

Efficient Characterization of Interconnects with Arbitrary Polygonal Cross-sections using Fokas-derived Dirichlet-to-Neumann Operators

A novel technique to accurately characterize interconnects with general, piecewise homogeneous material parameters and arbitrary polygonal cross-sections is presented. To compute the per-unit-of-length complex inductance and capacitance matrices of the considered structures, we apply a boundary integral equation framework, invoking a Dirichlet-to-Neumann formalism to recast the problem at hand. The pertinent operators are constructed by […]

Reduced-Order Stochastic Testing of Interconnects Subject to Line Edge Roughness

In this contribution we study the propagation constant of interconnects subject to line edge roughness by means of an efficient stochastic framework. By employing the stochastic testing method, we succeed in limiting the number of calls to the full-wave electromagnetic field solver at the core of the system. Additionally, the computationally burdensome solution of the […]