A novel method is presented to accurately determine the operational range of an on-body, passive ultra-high-frequency (UHF) radio-frequency identification (RFID) system operating in the radiative near-field, based on its far-field radiation patterns. To this end, an efficient algorithm based on 3-D multipole expansion of the electromagnetic fields is formulated. By combining the new operator with the simulated or measured standalone far-field radiation patterns of the on-body RFID system, a comprehensive and accurate range determination is obtained. Compared with commercial software tools and measurements, we prove the accuracy and improved speed of the novel technique.
Broadband Electromagnetic Modeling of On-Chip Passives Using a Differential Surface Admittance Operator for 3-D Piecewise Homogeneous Structures
Accurate modeling of on-chip passive components is vital for reliable integrated circuit (IC) design. However, this is non-trivial due to the inherent heterogeneity of the