A novel method is presented to accurately determine the operational range of an on-body, passive ultra-high-frequency (UHF) radio-frequency identification (RFID) system operating in the radiative near-field, based on its far-field radiation patterns. To this end, an efficient algorithm based on 3-D multipole expansion of the electromagnetic fields is formulated. By combining the new operator with the simulated or measured standalone far-field radiation patterns of the on-body RFID system, a comprehensive and accurate range determination is obtained. Compared with commercial software tools and measurements, we prove the accuracy and improved speed of the novel technique.
Construction of the differential surface admittance operator with an extended Fokas method for electromagnetic scattering at polygonal objects with arbitrary material parameters
This article presents a novel method to accurately simulate electromagnetic scattering at homogeneous polygonal cylinders with arbitrary material properties. A single source equivalence approach is