In this contribution, we propose a novel approach to rigorously model interconnect structures with an arbitrary convex polygonal cross-section and general, piecewise homogeneous, material parameters. A full-wave boundary integral equation formulation is combined with a differential surface admittance approach, invoking an extended form of the numerically fast Fokas method to construct the pertinent operator. Several examples validate our method and demonstrate its applicability to per-unit-of-length resistance and inductance characterization.
Spectral Bayesian Optimization Using a Physics-Informed Rational Szegö Kernel for Microwave Design
Microwave device design increasingly relies on surrogate modeling to accelerate optimization and reduce costly electromagnetic (EM) simulations. This paper presents a spectral Bayesian optimization (SBO)