In this contribution, we propose a novel approach to rigorously model interconnect structures with an arbitrary convex polygonal cross-section and general, piecewise homogeneous, material parameters. A full-wave boundary integral equation formulation is combined with a differential surface admittance approach, invoking an extended form of the numerically fast Fokas method to construct the pertinent operator. Several examples validate our method and demonstrate its applicability to per-unit-of-length resistance and inductance characterization.
A semi‑classical Floquet‑NEGF approach to model photon‑assisted tunneling in quantum well devices
The non-equilibrium Green’s function formalism is often employed to model photon-assisted tunneling processes in opto-electronic quantum well devices. For this purpose, self-consistent schemes based on