In this contribution, we propose a novel approach to rigorously model interconnect structures with an arbitrary convex polygonal cross-section and general, piecewise homogeneous, material parameters. A full-wave boundary integral equation formulation is combined with a differential surface admittance approach, invoking an extended form of the numerically fast Fokas method to construct the pertinent operator. Several examples validate our method and demonstrate its applicability to per-unit-of-length resistance and inductance characterization.
Fokas Based Dirichlet-to-Neumann Operators for Accurate Signal Integrity Assessment of Interconnects
In this contribution, we present a new approach to fully characterize interconnects composed out of arbitrary polygonal cross-sections and containing piecewise homogeneous material parameters. The